Solveeit Logo

Question

Question: Let $Q = \begin{bmatrix} 1 & 3 & x \\ x & 2 & 3 \\ x & x & 4 \end{bmatrix}_{3x3}$, $x > 2$ be the ad...

Let Q=[13xx23xx4]3x3Q = \begin{bmatrix} 1 & 3 & x \\ x & 2 & 3 \\ x & x & 4 \end{bmatrix}_{3x3}, x>2x > 2 be the adjoint of a matrix PP and P=2|P| = 2, If A=[x 2x x]1x3A = [x \ -2x \ x]_{1x3} and B=[x2xx]3x1B = \begin{bmatrix} x \\ -2x \\ x \end{bmatrix}_{3x1}. Then AQB=[k]1x1AQB = [k]_{1x1}. The value of k2\frac{|k|}{2} is

Answer

17 + 12√2

Explanation

Solution

The problem involves properties of adjoint matrices and matrix multiplication.

  1. Find the determinant of Q in terms of x: Given Q=[13xx23xx4]Q = \begin{bmatrix} 1 & 3 & x \\ x & 2 & 3 \\ x & x & 4 \end{bmatrix}. The determinant of QQ is: Q=1(2×43×x)3(x×43×x)+x(x×x2×x)|Q| = 1(2 \times 4 - 3 \times x) - 3(x \times 4 - 3 \times x) + x(x \times x - 2 \times x) Q=1(83x)3(4x3x)+x(x22x)|Q| = 1(8 - 3x) - 3(4x - 3x) + x(x^2 - 2x) Q=83x3x+x32x2|Q| = 8 - 3x - 3x + x^3 - 2x^2 Q=x32x26x+8|Q| = x^3 - 2x^2 - 6x + 8

  2. Use the property of adjoint matrix determinant: We are given that Q=adj(P)Q = \text{adj}(P) and PP is a 3×33 \times 3 matrix (since QQ is 3×33 \times 3). For an n×nn \times n matrix PP, we have adj(P)=Pn1|\text{adj}(P)| = |P|^{n-1}. In this case, n=3n=3, so Q=adj(P)=P31=P2|Q| = |\text{adj}(P)| = |P|^{3-1} = |P|^2. Given P=2|P|=2, we have Q=22=4|Q| = 2^2 = 4.

  3. Solve for x: Equating the two expressions for Q|Q|: x32x26x+8=4x^3 - 2x^2 - 6x + 8 = 4 x32x26x+4=0x^3 - 2x^2 - 6x + 4 = 0 We look for roots of this cubic equation. Testing integer factors of 4, we find that x=2x=-2 is a root: (2)32(2)26(2)+4=88+12+4=0(-2)^3 - 2(-2)^2 - 6(-2) + 4 = -8 - 8 + 12 + 4 = 0. Since (x+2)(x+2) is a factor, we perform polynomial division: (x32x26x+4)÷(x+2)=x24x+2(x^3 - 2x^2 - 6x + 4) \div (x+2) = x^2 - 4x + 2. So, the equation becomes (x+2)(x24x+2)=0(x+2)(x^2 - 4x + 2) = 0. The roots are x=2x=-2 or x24x+2=0x^2 - 4x + 2 = 0. Using the quadratic formula for x24x+2=0x^2 - 4x + 2 = 0: x=(4)±(4)24(1)(2)2(1)=4±1682=4±82=4±222=2±2x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(2)}}{2(1)} = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm \sqrt{8}}{2} = \frac{4 \pm 2\sqrt{2}}{2} = 2 \pm \sqrt{2}. We have three possible values for xx: 2-2, 2+22+\sqrt{2}, 222-\sqrt{2}. The problem states x>2x > 2. 2+22+1.414=3.4142+\sqrt{2} \approx 2+1.414 = 3.414, which satisfies x>2x > 2. 2221.414=0.5862-\sqrt{2} \approx 2-1.414 = 0.586, which does not satisfy x>2x > 2. Therefore, x=2+2x = 2+\sqrt{2}.

  4. Calculate AQB: We are given A=[x 2x x]A = [x \ -2x \ x] and B=[x2xx]B = \begin{bmatrix} x \\ -2x \\ x \end{bmatrix}. First, calculate AQAQ: AQ=[x 2x x][13xx23xx4]AQ = [x \ -2x \ x] \begin{bmatrix} 1 & 3 & x \\ x & 2 & 3 \\ x & x & 4 \end{bmatrix} AQ=[(x)(1)+(2x)(x)+(x)(x)(x)(3)+(2x)(2)+(x)(x)(x)(x)+(2x)(3)+(x)(4)]AQ = [ (x)(1) + (-2x)(x) + (x)(x) \quad (x)(3) + (-2x)(2) + (x)(x) \quad (x)(x) + (-2x)(3) + (x)(4) ] AQ=[x2x2+x23x4x+x2x26x+4x]AQ = [ x - 2x^2 + x^2 \quad 3x - 4x + x^2 \quad x^2 - 6x + 4x ] AQ=[x2+xx2xx22x]AQ = [ -x^2 + x \quad x^2 - x \quad x^2 - 2x ]

    Now, calculate (AQ)B(AQ)B: k=[x2+xx2xx22x][x2xx]k = [ -x^2 + x \quad x^2 - x \quad x^2 - 2x ] \begin{bmatrix} x \\ -2x \\ x \end{bmatrix} k=(x2+x)(x)+(x2x)(2x)+(x22x)(x)k = (-x^2 + x)(x) + (x^2 - x)(-2x) + (x^2 - 2x)(x) k=x3+x22x3+2x2+x32x2k = -x^3 + x^2 - 2x^3 + 2x^2 + x^3 - 2x^2 k=(x32x3+x3)+(x2+2x22x2)k = (-x^3 - 2x^3 + x^3) + (x^2 + 2x^2 - 2x^2) k=2x3+x2k = -2x^3 + x^2

  5. Substitute the value of x and simplify k: From the cubic equation x32x26x+4=0x^3 - 2x^2 - 6x + 4 = 0, we can write x3=2x2+6x4x^3 = 2x^2 + 6x - 4. Substitute this into the expression for kk: k=2(2x2+6x4)+x2k = -2(2x^2 + 6x - 4) + x^2 k=4x212x+8+x2k = -4x^2 - 12x + 8 + x^2 k=3x212x+8k = -3x^2 - 12x + 8

    Now, substitute x=2+2x = 2+\sqrt{2}: x2=(2+2)2=22+2(2)2+(2)2=4+42+2=6+42x^2 = (2+\sqrt{2})^2 = 2^2 + 2(2)\sqrt{2} + (\sqrt{2})^2 = 4 + 4\sqrt{2} + 2 = 6 + 4\sqrt{2}.

    k=3(6+42)12(2+2)+8k = -3(6 + 4\sqrt{2}) - 12(2 + \sqrt{2}) + 8 k=1812224122+8k = -18 - 12\sqrt{2} - 24 - 12\sqrt{2} + 8 k=(1824+8)+(122122)k = (-18 - 24 + 8) + (-12\sqrt{2} - 12\sqrt{2}) k=34242k = -34 - 24\sqrt{2}

  6. Calculate k2\frac{|k|}{2}: k=34242=(34+242)=34+242|k| = |-34 - 24\sqrt{2}| = |-(34 + 24\sqrt{2})| = 34 + 24\sqrt{2}. k2=34+2422=17+122\frac{|k|}{2} = \frac{34 + 24\sqrt{2}}{2} = 17 + 12\sqrt{2}.

The final answer is 17+122\boxed{17 + 12\sqrt{2}}.