Solveeit Logo

Question

Question: Compute the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\binom{2n}{2}} = \frac{1}{\binom{2}{2}} -...

Compute the series

n=1(1)n1(2n2)=1(22)1(42)+1(62)1(82)+1(102)+1(122)+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\binom{2n}{2}} = \frac{1}{\binom{2}{2}} - \frac{1}{\binom{4}{2}} + \frac{1}{\binom{6}{2}} - \frac{1}{\binom{8}{2}} + \frac{1}{\binom{10}{2}} + \frac{1}{\binom{12}{2}} + \dots

Answer

π2ln(2)\frac{\pi}{2} - \ln(2)

Explanation

Solution

The series term (1)n1(2n2)\frac{(-1)^{n-1}}{\binom{2n}{2}} is simplified using (2n2)=n(2n1)\binom{2n}{2} = n(2n-1). The resulting fraction 1n(2n1)\frac{1}{n(2n-1)} is decomposed into partial fractions 22n11n\frac{2}{2n-1} - \frac{1}{n}. This transforms the original series into two known alternating series: 2n=1(1)n12n12 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} and n=1(1)n1n\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}. The first sum is 2×arctan(1)=2×π4=π22 \times \arctan(1) = 2 \times \frac{\pi}{4} = \frac{\pi}{2}. The second sum is ln(1+1)=ln(2)\ln(1+1) = \ln(2). Combining these results yields π2ln(2)\frac{\pi}{2} - \ln(2).