Solveeit Logo

Question

Question: A circle S = 0 passes through points of intersection of circles \(x^2 + y^2 - 2x + 4y - 1 = 0\) and ...

A circle S = 0 passes through points of intersection of circles x2+y22x+4y1=0x^2 + y^2 - 2x + 4y - 1 = 0 and x2+y2+4x2y5=0x^2 + y^2 + 4x - 2y - 5 = 0 and cuts the circle x2+y2=4x^2 + y^2 = 4 orthogonally. Then length of tangent from origin on circle S = 0 is LL, then L5\dfrac{L}{5} is

Answer

25\displaystyle \tfrac{2}{5}

Explanation

Solution

Solution Outline

  1. Family of circles through intersections
    Let the required circle be

    C1+λC2=0 C_1 + \lambda\,C_2 = 0

    where

    C1:x2+y22x+4y1=0,C2:x2+y2+4x2y5=0. C_1: x^2 + y^2 - 2x + 4y - 1 = 0,\quad C_2: x^2 + y^2 + 4x - 2y - 5 = 0.

    This gives

    (1+λ)(x2+y2)+(2+4λ)x+(42λ)y+(15λ)=0. (1+\lambda)(x^2+y^2) +(-2+4\lambda)x +(4-2\lambda)y +(-1-5\lambda)=0.
  2. Orthogonality condition
    For orthogonality with x2+y24=0x^2 + y^2 - 4 = 0, the constants must satisfy

    c+c1=0,c1=4. c + c_1 = 0,\quad c_1 = -4.

    Here c=15λ1+λc = \frac{-1 -5\lambda}{1+\lambda}.
    So

    15λ1+λ4=015λ=4(1+λ)λ=59. \frac{-1 -5\lambda}{1+\lambda} -4 = 0 \quad\Longrightarrow\quad -1 -5\lambda = 4(1+\lambda) \quad\Longrightarrow\quad \lambda = -\frac{5}{9}.
  3. Equation of required circle
    Substitute λ=59\lambda = -\tfrac{5}{9}. Then 1+λ=491+\lambda = \tfrac{4}{9} and

    2g=2+4λ1+λ=192,2f=42λ1+λ=232,c=4. 2g = \frac{-2+4\lambda}{1+\lambda} = -\frac{19}{2},\quad 2f = \frac{4-2\lambda}{1+\lambda} = \frac{23}{2},\quad c = 4.

    So the circle is

    x2+y2192x+232y+4=0. x^2+y^2 - \frac{19}{2}x + \frac{23}{2}y + 4 = 0.
  4. Length of tangent from the origin
    For x2+y2+2gx+2fy+c=0x^2+y^2+2gx+2fy+c=0, the tangent length from (0,0)(0,0) is

    L=S(0,0)=c=4=2. L = \sqrt{S(0,0)} = \sqrt{c} = \sqrt{4} = 2.

Hence

L5=25.\frac{L}{5} = \frac{2}{5}.