Solveeit Logo

Question

Question: A ball at rest is released from a height equal to $R_E$ above Earth's surface where $R_E$ is the rad...

A ball at rest is released from a height equal to RER_E above Earth's surface where RER_E is the radius of Earth. What is the speed of the ball when it is at a distance RE2\frac{R_E}{2} above the Earth's surface? (MEM_E is mass of earth)

A

GME3RE\sqrt{\frac{GM_E}{3R_E}}

B

GME2RE\sqrt{\frac{GM_E}{2R_E}}

C

GME6RE\sqrt{\frac{GM_E}{6R_E}}

D

GMERE\sqrt{\frac{GM_E}{R_E}}

Answer

GME3RE\sqrt{\frac{GM_E}{3R_E}}

Explanation

Solution

Given:

  • Initial height above Earth’s surface = RER_E
    \Rightarrow Initial distance from Earth’s center, ri=RE+RE=2REr_i = R_E + R_E = 2R_E
  • Final height above Earth’s surface = RE2\frac{R_E}{2}
    \Rightarrow Final distance from Earth’s center, rf=RE+RE2=3RE2r_f = R_E + \frac{R_E}{2} = \frac{3R_E}{2}

Using conservation of energy:

Initial Energy, Ei=K.E.i+P.E.i=0GMEm2RE=GMEm2RE\text{Initial Energy, } E_i = \text{K.E.}_i + \text{P.E.}_i = 0 - \frac{GM_E m}{2R_E} = -\frac{GM_E m}{2R_E} Final Energy, Ef=12mv2GMEm3RE2=12mv22GMEm3RE\text{Final Energy, } E_f = \frac{1}{2} m v^2 - \frac{GM_E m}{\frac{3R_E}{2}} = \frac{1}{2} m v^2 - \frac{2GM_E m}{3R_E}

Setting Ei=EfE_i = E_f:

GMEm2RE=12mv22GMEm3RE-\frac{GM_E m}{2R_E} = \frac{1}{2} m v^2 - \frac{2GM_E m}{3R_E}

Cancel mm and solve for v2v^2:

12v2=2GME3REGME2RE\frac{1}{2} v^2 = \frac{2GM_E}{3R_E} - \frac{GM_E}{2R_E}

Finding a common denominator:

2GME3RE=4GME6RE,GME2RE=3GME6RE\frac{2GM_E}{3R_E} = \frac{4GM_E}{6R_E}, \quad \frac{GM_E}{2R_E} = \frac{3GM_E}{6R_E} 12v2=4GME3GME6RE=GME6RE\frac{1}{2} v^2 = \frac{4GM_E - 3GM_E}{6R_E} = \frac{GM_E}{6R_E} v2=2GME6RE=GME3REv^2 = \frac{2GM_E}{6R_E} = \frac{GM_E}{3R_E} v=GME3REv = \sqrt{\frac{GM_E}{3R_E}}

Explanation:

  1. Determine initial and final distances from Earth’s center.
  2. Apply energy conservation between the two points.
  3. Rearrange to solve for vv.