Solveeit Logo

Question

Question: Prove that : $4\sin 27^{\circ} = (5 + \sqrt{5})^{1/2} - (3 - \sqrt{5})^{1/2}$...

Prove that : 4sin27=(5+5)1/2(35)1/24\sin 27^{\circ} = (5 + \sqrt{5})^{1/2} - (3 - \sqrt{5})^{1/2}

Answer

LHS = RHS, hence proved.

Explanation

Solution

To prove the identity 4sin27=(5+5)1/2(35)1/24\sin 27^{\circ} = (5 + \sqrt{5})^{1/2} - (3 - \sqrt{5})^{1/2}, we will simplify both the Left Hand Side (LHS) and the Right Hand Side (RHS) and show that they are equal.

Step 1: Simplify the Left Hand Side (LHS) LHS =4sin27= 4\sin 27^{\circ}

We can write 2727^{\circ} as 451845^{\circ} - 18^{\circ}. Using the trigonometric identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B:

sin27=sin(4518)=sin45cos18cos45sin18\sin 27^{\circ} = \sin(45^{\circ} - 18^{\circ}) = \sin 45^{\circ} \cos 18^{\circ} - \cos 45^{\circ} \sin 18^{\circ}

We know that sin45=cos45=12\sin 45^{\circ} = \cos 45^{\circ} = \frac{1}{\sqrt{2}}.

So, sin27=12cos1812sin18=12(cos18sin18)\sin 27^{\circ} = \frac{1}{\sqrt{2}} \cos 18^{\circ} - \frac{1}{\sqrt{2}} \sin 18^{\circ} = \frac{1}{\sqrt{2}}(\cos 18^{\circ} - \sin 18^{\circ})

Therefore, LHS =412(cos18sin18)=42(cos18sin18)=22(cos18sin18)= 4 \cdot \frac{1}{\sqrt{2}}(\cos 18^{\circ} - \sin 18^{\circ}) = \frac{4}{\sqrt{2}}(\cos 18^{\circ} - \sin 18^{\circ}) = 2\sqrt{2}(\cos 18^{\circ} - \sin 18^{\circ}).

Step 2: Simplify the Right Hand Side (RHS) RHS =(5+5)1/2(35)1/2=5+535= (5 + \sqrt{5})^{1/2} - (3 - \sqrt{5})^{1/2} = \sqrt{5 + \sqrt{5}} - \sqrt{3 - \sqrt{5}}

To simplify these nested square roots, we multiply and divide each term by 2\sqrt{2}:

5+5=2(5+5)2=10+252\sqrt{5 + \sqrt{5}} = \frac{\sqrt{2(5 + \sqrt{5})}}{\sqrt{2}} = \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{2}}

35=2(35)2=6252\sqrt{3 - \sqrt{5}} = \frac{\sqrt{2(3 - \sqrt{5})}}{\sqrt{2}} = \frac{\sqrt{6 - 2\sqrt{5}}}{\sqrt{2}}

Now, we simplify the terms in the numerators:

For 625\sqrt{6 - 2\sqrt{5}}: We look for two numbers whose sum is 6 and product is 5. These numbers are 5 and 1.

So, 625=(5)2+12251=(51)2=51\sqrt{6 - 2\sqrt{5}} = \sqrt{(\sqrt{5})^2 + 1^2 - 2\sqrt{5} \cdot 1} = \sqrt{(\sqrt{5} - 1)^2} = |\sqrt{5} - 1|. Since 5>1\sqrt{5} > 1, this simplifies to 51\sqrt{5} - 1.

We know the standard value sin18=514\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}.

Thus, 51=4sin18\sqrt{5} - 1 = 4\sin 18^{\circ}.

For 10+25\sqrt{10 + 2\sqrt{5}}: We recall the standard value cos18=10+254\cos 18^{\circ} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}.

Thus, 10+25=4cos18\sqrt{10 + 2\sqrt{5}} = 4\cos 18^{\circ}.

Substitute these simplified forms back into the RHS expression:

RHS =4cos1824sin182= \frac{4\cos 18^{\circ}}{\sqrt{2}} - \frac{4\sin 18^{\circ}}{\sqrt{2}}

RHS =42(cos18sin18)= \frac{4}{\sqrt{2}}(\cos 18^{\circ} - \sin 18^{\circ})

RHS =22(cos18sin18)= 2\sqrt{2}(\cos 18^{\circ} - \sin 18^{\circ}).

Step 3: Compare LHS and RHS We found:

LHS =22(cos18sin18)= 2\sqrt{2}(\cos 18^{\circ} - \sin 18^{\circ})

RHS =22(cos18sin18)= 2\sqrt{2}(\cos 18^{\circ} - \sin 18^{\circ})

Since LHS = RHS, the identity is proven.