Solveeit Logo

Question

Question: Let $a_1, a_2, a_3, a_4$ and b be real numbers such that $b + \sum_{k=1}^{4} a_k = 8, b^2 + \sum_{k=...

Let a1,a2,a3,a4a_1, a_2, a_3, a_4 and b be real numbers such that b+k=14ak=8,b2+k=14ak2=16b + \sum_{k=1}^{4} a_k = 8, b^2 + \sum_{k=1}^{4} a_k^2 = 16 then b can be-

A

2

B

3

C

4

D

5

Answer

2 and 3

Explanation

Solution

Let the given equations be:

  1. b+k=14ak=8b + \sum_{k=1}^{4} a_k = 8
  2. b2+k=14ak2=16b^2 + \sum_{k=1}^{4} a_k^2 = 16

Let S1=k=14akS_1 = \sum_{k=1}^{4} a_k and S2=k=14ak2S_2 = \sum_{k=1}^{4} a_k^2. From (1), S1=8bS_1 = 8 - b. From (2), S2=16b2S_2 = 16 - b^2.

For any real numbers a1,a2,a3,a4a_1, a_2, a_3, a_4, the Cauchy-Schwarz inequality states that (k=1nxk)2nk=1nxk2(\sum_{k=1}^{n} x_k)^2 \le n \sum_{k=1}^{n} x_k^2. In this case, n=4n=4, so S124S2S_1^2 \le 4 S_2.

Substitute the expressions for S1S_1 and S2S_2: (8b)24(16b2)(8 - b)^2 \le 4(16 - b^2) 6416b+b2644b264 - 16b + b^2 \le 64 - 4b^2 b216b+64644b2b^2 - 16b + 64 \le 64 - 4b^2 5b216b05b^2 - 16b \le 0 b(5b16)0b(5b - 16) \le 0

This inequality holds when bb is between the roots of b(5b16)=0b(5b-16)=0, which are b=0b=0 and b=165b=\frac{16}{5}. So, 0b1650 \le b \le \frac{16}{5}. Since 165=3.2\frac{16}{5} = 3.2, the possible values of bb are in the interval [0,3.2][0, 3.2].