Solveeit Logo

Question

Question: 36. $\frac{d}{dx}(x^2e^x \sin x) =$...

  1. ddx(x2exsinx)=\frac{d}{dx}(x^2e^x \sin x) =
A

xex(2sinx+xsinx+xcosx)x e^x (2 \sin x + x \sin x + x \cos x)

B

xex(2sinx+xsinxxcosx)x e^x (2 \sin x + x \sin x - x \cos x)

C

xex(2sinx+xsinx+cosx)x e^x (2 \sin x + x \sin x + \cos x)

D

xex(2sinxxsinxcosx)x e^x (2 \sin x - x \sin x - \cos x)

Answer

Option (a)

Explanation

Solution

Let

u=x2,v=ex,w=sinx.u = x^2,\quad v = e^x,\quad w = \sin x.

Then,

u=2x,v=ex,w=cosx.u' = 2x,\quad v' = e^x,\quad w' = \cos x.

Using the product rule for three functions:

ddx(uvw)=uvw+uvw+uvw,\frac{d}{dx}(uvw) = u'vw + uv'w + uvw',

we get:

ddx(x2exsinx)=2xexsinx+x2exsinx+x2excosx.\frac{d}{dx}(x^2 e^x \sin x) = 2x e^x \sin x + x^2 e^x \sin x + x^2 e^x \cos x.

Factor out xexxe^x:

=xex(2sinx+xsinx+xcosx).= xe^x \left(2 \sin x + x \sin x + x \cos x\right).