Solveeit Logo

Question

Question: A line makes the same angle '$\alpha$' with each of the x and y axes. If the angle '$\theta$', which...

A line makes the same angle 'α\alpha' with each of the x and y axes. If the angle 'θ\theta', which it makes with the z-axis, is such that sin2θ=2sin2αsin^2\theta = 2sin^2\alpha, then the angle α\alpha is

A

π2\frac{\pi}{2}

B

π3\frac{\pi}{3}

C

π4\frac{\pi}{4}

D

π6\frac{\pi}{6}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Let the line have direction cosines:

l=cosα,m=cosα,n=cosθ.l = \cos\alpha, \quad m = \cos\alpha, \quad n = \cos\theta.

Since the line makes the same angle α\alpha with the xx and yy axes. Using the identity for direction cosines:

l2+m2+n2=1    2cos2α+cos2θ=1cos2θ=12cos2α.l^2 + m^2 + n^2 = 1 \implies 2\cos^2\alpha + \cos^2\theta = 1 \quad \Longrightarrow \quad \cos^2\theta = 1 - 2\cos^2\alpha.

Now, note that

sin2θ=1cos2θ=1(12cos2α)=2cos2α.\sin^2\theta = 1 - \cos^2\theta = 1 - (1 - 2\cos^2\alpha) = 2\cos^2\alpha.

The problem gives:

sin2θ=2sin2α=2(1cos2α).\sin^2\theta = 2\sin^2\alpha = 2(1-\cos^2\alpha).

Equate the two expressions for sin2θ\sin^2\theta:

2cos2α=2(1cos2α)    cos2α=1cos2α    2cos2α=1.2\cos^2\alpha = 2(1-\cos^2\alpha) \implies \cos^2\alpha = 1-\cos^2\alpha \implies 2\cos^2\alpha = 1.

Thus,

cos2α=12α=π4(since α is acute).\cos^2\alpha = \frac{1}{2} \quad \Longrightarrow \quad \alpha = \frac{\pi}{4} \quad \text{(since $\alpha$ is acute)}.