Solveeit Logo

Question

Question: If $\ell = \lim_{x \to 1^+} 2^{-2^{\frac{1}{1-x}}}$ and $m = \lim_{x \to 1^+}\frac{x \sin(x-[x])}{x-...

If =limx1+2211x\ell = \lim_{x \to 1^+} 2^{-2^{\frac{1}{1-x}}} and m=limx1+xsin(x[x])x1m = \lim_{x \to 1^+}\frac{x \sin(x-[x])}{x-1}, where [.] denotes greatest integer function, then mln(x+1+x2)1+x2dx\int_{\ell}^{m}\frac{\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}dx is equal to -

A

1

B

\frac{1}{2}

C

\ln\frac{1}{2}

D

0

Answer

0

Explanation

Solution

  1. Calculation of \ell: As x1+x \to 1^+, 11x\frac{1}{1-x} \to -\infty. Thus, =limu22u=20=1\ell = \lim_{u \to -\infty} 2^{-2^u} = 2^{-0} = 1.

  2. Calculation of mm: As x1+x \to 1^+, xx is slightly greater than 1, so [x]=1[x]=1. Thus, x[x]=x1x-[x] = x-1. m=limx1+xsin(x1)x1=(limx1+x)(limx1+sin(x1)x1)=11=1m = \lim_{x \to 1^+}\frac{x \sin(x-1)}{x-1} = \left(\lim_{x \to 1^+} x\right) \cdot \left(\lim_{x \to 1^+} \frac{\sin(x-1)}{x-1}\right) = 1 \cdot 1 = 1.

  3. Evaluation of the integral: The integral to be evaluated is mln(x+1+x2)1+x2dx\int_{\ell}^{m}\frac{\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}dx. Substituting the calculated values of =1\ell=1 and m=1m=1, we get 11ln(x+1+x2)1+x2dx\int_{1}^{1}\frac{\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}dx. A definite integral where the upper and lower limits of integration are the same is always equal to 0.