Solveeit Logo

Question

Question: A, B, C and D are (3, 7, 4), (5, -2, 3), (-4, 5, 6) and (1, 2, 3) respectively. Then the volume of t...

A, B, C and D are (3, 7, 4), (5, -2, 3), (-4, 5, 6) and (1, 2, 3) respectively. Then the volume of the parallelopiped with AB, AC and AD as the coterminus edges (in cubic units)

A

92

B

94

C

91

D

93

Answer

92

Explanation

Solution

The volume of a parallelepiped formed by vectors AB\vec{AB}, AC\vec{AC}, and AD\vec{AD} is given by the absolute value of the scalar triple product: V=AB(AC×AD)V = |\vec{AB} \cdot (\vec{AC} \times \vec{AD})|.

  1. Compute vectors:

    • AB=BA=(53,27,34)=(2,9,1)\vec{AB} = B - A = (5-3, -2-7, 3-4) = (2, -9, -1)
    • AC=CA=(43,57,64)=(7,2,2)\vec{AC} = C - A = (-4-3, 5-7, 6-4) = (-7, -2, 2)
    • AD=DA=(13,27,34)=(2,5,1)\vec{AD} = D - A = (1-3, 2-7, 3-4) = (-2, -5, -1)
  2. Compute the cross product AC×AD\vec{AC} \times \vec{AD}:

    AC×AD=ijk722251=(2+10)i(7+4)j+(354)k=(12,11,31)\vec{AC} \times \vec{AD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -7 & -2 & 2 \\ -2 & -5 & -1 \\ \end{vmatrix} = (2+10)\mathbf{i} - (7+4)\mathbf{j} + (35-4)\mathbf{k} = (12, -11, 31)
  3. Compute the scalar triple product (Volume):

    V=AB(AC×AD)=(2,9,1)(12,11,31)=24+9931=92=92V = |\vec{AB} \cdot (\vec{AC} \times \vec{AD})| = |(2, -9, -1) \cdot (12, -11, 31)| = |24 + 99 - 31| = |92| = 92

Therefore, the volume of the parallelepiped is 92 cubic units.