Solveeit Logo

Question

Question: The value of $\lim_{x\to\infty} e^{-x} \int_{\frac{1}{x}}^{x+\frac{1}{x}} g(t) \, dt$ equal to :...

The value of limxex1xx+1xg(t)dt\lim_{x\to\infty} e^{-x} \int_{\frac{1}{x}}^{x+\frac{1}{x}} g(t) \, dt equal to :

A

0

B

1

C

2

D

DNE

Answer

1

Explanation

Solution

Let the limit be LL. We have L=limx1xx+1xg(t)dtexL = \lim_{x\to\infty} \frac{\int_{\frac{1}{x}}^{x+\frac{1}{x}} g(t) \, dt}{e^x}. This is of the indeterminate form \frac{\infty}{\infty} if g(t)dt\int g(t) dt tends to infinity, or L\frac{L'}{\infty} if g(t)dt\int g(t) dt converges to LL'. Consider the case g(t)=etg(t) = e^t. Then, 1xx+1xetdt=[et]1xx+1x=ex+1xe1x\int_{\frac{1}{x}}^{x+\frac{1}{x}} e^t \, dt = [e^t]_{\frac{1}{x}}^{x+\frac{1}{x}} = e^{x+\frac{1}{x}} - e^{\frac{1}{x}}. The limit becomes: L=limxex(ex+1xe1x)=limx(ex+1xexe1xex)L = \lim_{x\to\infty} e^{-x} (e^{x+\frac{1}{x}} - e^{\frac{1}{x}}) = \lim_{x\to\infty} (e^{x+\frac{1}{x}}e^{-x} - e^{\frac{1}{x}}e^{-x}) L=limx(e1xex+1x)L = \lim_{x\to\infty} (e^{\frac{1}{x}} - e^{-x+\frac{1}{x}}) As xx \to \infty, 1x0\frac{1}{x} \to 0, so e1xe0=1e^{\frac{1}{x}} \to e^0 = 1. As xx \to \infty, x+1x-x+\frac{1}{x} \to -\infty, so ex+1x0e^{-x+\frac{1}{x}} \to 0. Therefore, L=10=1L = 1 - 0 = 1. While the value of the limit depends on the function g(t)g(t), in the context of a multiple-choice question with these options, the case g(t)=etg(t) = e^t is often the intended scenario that yields a specific numerical answer among the choices. If g(t)g(t) grows slower than ete^t, the limit is 0. If g(t)g(t) grows faster than ete^t, the limit might be \infty (DNE). The choice 1 suggests that g(t)g(t) grows comparably to ete^t.