Solveeit Logo

Question

Question: The area of the region bounded by the y-axis, $y = \cos x, y = \sin x$, when $0 \leq x \leq \frac{\p...

The area of the region bounded by the y-axis, y=cosx,y=sinxy = \cos x, y = \sin x, when 0xπ40 \leq x \leq \frac{\pi}{4}, is

A

2\sqrt{2} sq. units

B

2(21)2(\sqrt{2}-1) sq. units

C

(21)(\sqrt{2}-1) sq. units

D

(2+1)(\sqrt{2}+1) sq. units

Answer

(21)(\sqrt{2}-1)

Explanation

Solution

The area of the region bounded by the y-axis, y=cosxy = \cos x, and y=sinxy = \sin x, when 0xπ40 \leq x \leq \frac{\pi}{4}, is given by the integral of the difference between the upper curve and the lower curve over the given interval.

In the interval [0,π4][0, \frac{\pi}{4}], we have cosxsinx\cos x \geq \sin x. The y-axis corresponds to x=0x=0. The upper boundary is y=cosxy = \cos x and the lower boundary is y=sinxy = \sin x. The interval for xx is [0,π4][0, \frac{\pi}{4}].

The area AA is given by the definite integral: A=0π4(cosxsinx)dxA = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx

Now, we evaluate the integral: (cosxsinx)dx=cosxdxsinxdx=sinx(cosx)+C=sinx+cosx+C\int (\cos x - \sin x) dx = \int \cos x dx - \int \sin x dx = \sin x - (-\cos x) + C = \sin x + \cos x + C

Applying the limits of integration: A=[sinx+cosx]0π4A = [\sin x + \cos x]_{0}^{\frac{\pi}{4}} A=(sin(π4)+cos(π4))(sin(0)+cos(0))A = (\sin(\frac{\pi}{4}) + \cos(\frac{\pi}{4})) - (\sin(0) + \cos(0)) A=(22+22)(0+1)A = (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) - (0 + 1) A=(222)1A = (\frac{2\sqrt{2}}{2}) - 1 A=21A = \sqrt{2} - 1

The area of the region is (21)(\sqrt{2}-1) square units.