Solveeit Logo

Question

Question: If the value of the definite integral $I = \int_{1}^{\infty}\frac{(2x^3 - 1) dx}{x^6 + 2x^3 + 9x^2 +...

If the value of the definite integral I=1(2x31)dxx6+2x3+9x2+1I = \int_{1}^{\infty}\frac{(2x^3 - 1) dx}{x^6 + 2x^3 + 9x^2 + 1} can be expressed in the form ABcot1CD\frac{A}{B}cot^{-1}\frac{C}{D} where AB\frac{A}{B} and CD\frac{C}{D} are rationals in their lowest form, find the value of (A+B2+C3+D4)(A + B^2 + C^3 + D^4).

Answer

99

Explanation

Solution

The denominator is rewritten as (x3+1)2+(3x)2(x^3+1)^2 + (3x)^2. Dividing the numerator and denominator by 9x29x^2 transforms the integral into 2x919x2(x3+13x)2+1dx\int \frac{\frac{2x}{9} - \frac{1}{9x^2}}{\left(\frac{x^3+1}{3x}\right)^2 + 1} dx. Let u=x3+13xu = \frac{x^3+1}{3x}, then du=(2x313x2)dxdu = \left(\frac{2x}{3} - \frac{1}{3x^2}\right) dx. The integral becomes 13du1+u2=13arctan(u)\frac{1}{3} \int \frac{du}{1+u^2} = \frac{1}{3} \arctan(u). Evaluating from 11 to \infty gives π613arctan(23)\frac{\pi}{6} - \frac{1}{3} \arctan(\frac{2}{3}). Using arctan(y)+arccot(y)=π2\arctan(y) + \operatorname{arccot}(y) = \frac{\pi}{2}, this simplifies to 13arccot(23)\frac{1}{3} \operatorname{arccot}(\frac{2}{3}). Comparing with ABcot1CD\frac{A}{B}cot^{-1}\frac{C}{D}, we get A=1,B=3,C=2,D=3A=1, B=3, C=2, D=3. Thus, A+B2+C3+D4=1+32+23+34=1+9+8+81=99A + B^2 + C^3 + D^4 = 1 + 3^2 + 2^3 + 3^4 = 1 + 9 + 8 + 81 = 99.