Question
Question: If the value of the definite integral $I = \int_{1}^{\infty}\frac{(2x^3 - 1) dx}{x^6 + 2x^3 + 9x^2 +...
If the value of the definite integral I=∫1∞x6+2x3+9x2+1(2x3−1)dx can be expressed in the form BAcot−1DC where BA and DC are rationals in their lowest form, find the value of (A+B2+C3+D4).

Answer
99
Explanation
Solution
The denominator is rewritten as (x3+1)2+(3x)2. Dividing the numerator and denominator by 9x2 transforms the integral into ∫(3xx3+1)2+192x−9x21dx. Let u=3xx3+1, then du=(32x−3x21)dx. The integral becomes 31∫1+u2du=31arctan(u). Evaluating from 1 to ∞ gives 6π−31arctan(32). Using arctan(y)+arccot(y)=2π, this simplifies to 31arccot(32). Comparing with BAcot−1DC, we get A=1,B=3,C=2,D=3. Thus, A+B2+C3+D4=1+32+23+34=1+9+8+81=99.
