Solveeit Logo

Question

Question: If b is very small as compared to the value of a, so that the cube and other higher powers of $\frac...

If b is very small as compared to the value of a, so that the cube and other higher powers of ba\frac{b}{a} can be neglected in the identity 1ab+1a2b+1a3b+.....+1anb=αn+βn2+γn3\frac{1}{a-b}+\frac{1}{a-2b}+\frac{1}{a-3b}+.....+\frac{1}{a-nb} = \alpha n + \beta n^{2} + \gamma n^{3}, then the value of γ\gamma is

A

b23a3\frac{b^2}{3a^3}

B

b22a3\frac{b^2}{2a^3}

C

ba3\frac{b}{a^3}

D

b3a3\frac{b^3}{a^3}

Answer

b23a3\frac{b^2}{3a^3}

Explanation

Solution

The general term 1akb\frac{1}{a-kb} is expanded using binomial approximation: 1akb=1a(1kba)=1a(1kba)1\frac{1}{a-kb} = \frac{1}{a(1 - \frac{kb}{a})} = \frac{1}{a} \left(1 - \frac{kb}{a}\right)^{-1} Given that bb is very small compared to aa, we neglect higher powers of ba\frac{b}{a}. Using the binomial expansion (1x)11+x+x2(1-x)^{-1} \approx 1 + x + x^2 for small xx: (1kba)11+kba+(kba)2=1+kba+k2b2a2\left(1 - \frac{kb}{a}\right)^{-1} \approx 1 + \frac{kb}{a} + \left(\frac{kb}{a}\right)^2 = 1 + \frac{kb}{a} + \frac{k^2b^2}{a^2} So, the general term is approximated as: 1akb1a(1+kba+k2b2a2)=1a+kba2+k2b2a3\frac{1}{a-kb} \approx \frac{1}{a} \left(1 + \frac{kb}{a} + \frac{k^2b^2}{a^2}\right) = \frac{1}{a} + \frac{kb}{a^2} + \frac{k^2b^2}{a^3} Now, we sum this approximation from k=1k=1 to nn: k=1n1akbk=1n(1a+kba2+k2b2a3)\sum_{k=1}^{n} \frac{1}{a-kb} \approx \sum_{k=1}^{n} \left(\frac{1}{a} + \frac{kb}{a^2} + \frac{k^2b^2}{a^3}\right) =1ak=1n1+ba2k=1nk+b2a3k=1nk2= \frac{1}{a} \sum_{k=1}^{n} 1 + \frac{b}{a^2} \sum_{k=1}^{n} k + \frac{b^2}{a^3} \sum_{k=1}^{n} k^2 Using the standard summation formulas: k=1n1=n\sum_{k=1}^{n} 1 = n k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2} k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} Substituting these into the sum: Sum1a(n)+ba2(n(n+1)2)+b2a3(n(n+1)(2n+1)6)\text{Sum} \approx \frac{1}{a}(n) + \frac{b}{a^2}\left(\frac{n(n+1)}{2}\right) + \frac{b^2}{a^3}\left(\frac{n(n+1)(2n+1)}{6}\right) We are given the identity αn+βn2+γn3\alpha n + \beta n^{2} + \gamma n^{3}. We need to find the coefficient of n3n^3. Let's expand the sum of squares term: n(n+1)(2n+1)6=n(2n2+3n+1)6=2n3+3n2+n6=13n3+12n2+16n\frac{n(n+1)(2n+1)}{6} = \frac{n(2n^2 + 3n + 1)}{6} = \frac{2n^3 + 3n^2 + n}{6} = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n So the third term of the sum is: b2a3(13n3+12n2+16n)=b23a3n3+b22a3n2+b26a3n\frac{b^2}{a^3}\left(\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n\right) = \frac{b^2}{3a^3}n^3 + \frac{b^2}{2a^3}n^2 + \frac{b^2}{6a^3}n The full sum, when expanded and collected by powers of nn, will have the form: Sum(b23a3)n3+(b2a2+b22a3)n2+(1a+b2a2+b26a3)n\text{Sum} \approx \left(\frac{b^2}{3a^3}\right)n^3 + \left(\frac{b}{2a^2} + \frac{b^2}{2a^3}\right)n^2 + \left(\frac{1}{a} + \frac{b}{2a^2} + \frac{b^2}{6a^3}\right)n Comparing this to αn+βn2+γn3\alpha n + \beta n^{2} + \gamma n^{3}, the coefficient of n3n^3 is γ\gamma. Therefore, γ=b23a3\gamma = \frac{b^2}{3a^3}.