Solveeit Logo

Question

Question: For a, b > 0, let $$ f(x) = \begin{cases} \frac{\tan ((a+1)x) + b \tan x}{x} &, x<0 \\ 3 &, x = 0\\ ...

For a, b > 0, let

f(x)={tan((a+1)x)+btanxx,x<03,x=0ax+b2x2axbaxx,x>0f(x) = \begin{cases} \frac{\tan ((a+1)x) + b \tan x}{x} &, x<0 \\ 3 &, x = 0\\ \frac{\sqrt{ax+b^2x^2} - \sqrt{ax}}{b\sqrt{a} x\sqrt{x}} &, x > 0 \end{cases}

be a continous function at x = 0. Then ba\frac{b}{a} is equal to

A

5

B

4

C

8

D

6

Answer

6

Explanation

Solution

For continuity at x=0x=0, LHL=RHL=f(0)LHL = RHL = f(0).

LHL:

limx0tan((a+1)x)x+btanxx=(a+1)+b\lim_{x \to 0^-} \frac{\tan((a+1)x)}{x} + \frac{b\tan x}{x} = (a+1) + b

RHL:

limx0+ax+b2x2axbaxx\lim_{x \to 0^+} \frac{\sqrt{ax+b^2x^2} - \sqrt{ax}}{b\sqrt{a} x\sqrt{x}}

Multiply by conjugate:

limx0+b2x2baxx(ax+b2x2+ax)=limx0+bxa(a+b2x+a)=b2a\lim_{x \to 0^+} \frac{b^2x^2}{b\sqrt{a} x\sqrt{x}(\sqrt{ax+b^2x^2} + \sqrt{ax})} = \lim_{x \to 0^+} \frac{b\sqrt{x}}{\sqrt{a}(\sqrt{a+b^2x} + \sqrt{a})} = \frac{b}{2a}

Equating: a+1+b=3a+1+b = 3 and b2a=3\frac{b}{2a} = 3.

From b2a=3\frac{b}{2a} = 3, b=6ab=6a.

Substitute into first equation: a+1+6a=37a=2a=27a+1+6a=3 \Rightarrow 7a=2 \Rightarrow a=\frac{2}{7}.

Then b=6(27)=127b=6(\frac{2}{7}) = \frac{12}{7}.

Finally, ba=12/72/7=6\frac{b}{a} = \frac{12/7}{2/7} = 6.