Question
Question: For a, b > 0, let $$ f(x) = \begin{cases} \frac{\tan ((a+1)x) + b \tan x}{x} &, x<0 \\ 3 &, x = 0\\ ...
For a, b > 0, let
f(x)=⎩⎨⎧xtan((a+1)x)+btanx3baxxax+b2x2−ax,x<0,x=0,x>0be a continous function at x = 0. Then ab is equal to

A
5
B
4
C
8
D
6
Answer
6
Explanation
Solution
For continuity at x=0, LHL=RHL=f(0).
LHL:
x→0−limxtan((a+1)x)+xbtanx=(a+1)+bRHL:
x→0+limbaxxax+b2x2−axMultiply by conjugate:
x→0+limbaxx(ax+b2x2+ax)b2x2=x→0+lima(a+b2x+a)bx=2abEquating: a+1+b=3 and 2ab=3.
From 2ab=3, b=6a.
Substitute into first equation: a+1+6a=3⇒7a=2⇒a=72.
Then b=6(72)=712.
Finally, ab=2/712/7=6.