Solveeit Logo

Question

Question: The chord of contact of tangents drawn from a point on the circle \(x^2 + y^2 = 16\) to the circle \...

The chord of contact of tangents drawn from a point on the circle x2+y2=16x^2 + y^2 = 16 to the circle x2+y2=r2x^2 + y^2 = r^2 touches the circle x2+y2=1x^2 + y^2 = 1, then the value of r\lvert r\rvert is equal to

Answer

2

Explanation

Solution

Solution Approach

  1. Let P(x1,y1)P(x_1,y_1) be a point on the circle x2+y2=16x^2+y^2=16.
    x12+y12=16.\therefore x_1^2 + y_1^2 = 16.

  2. The equation of the chord of contact of tangents drawn from PP to the circle x2+y2=r2x^2+y^2=r^2 is

    xx1+yy1=r2. xx_1 + yy_1 = r^2.
  3. This line touches the circle x2+y2=1x^2+y^2=1.

    • Distance from center (0,0)(0,0) to the line xx1+yy1=r2xx_1+yy_1=r^2 must equal the radius 11.
    • Distance formula: r2x12+y12=1\displaystyle \frac{\lvert r^2 \rvert}{\sqrt{x_1^2 + y_1^2}} = 1.
  4. Substitute x12+y12=16x_1^2 + y_1^2 = 16:

    r216=1r24=1r2=4. \frac{\lvert r^2\rvert}{\sqrt{16}} = 1 \quad\Longrightarrow\quad \frac{\lvert r^2\rvert}{4} = 1 \quad\Longrightarrow\quad r^2 = 4.
  5. Hence,

    r=2. \lvert r\rvert = 2.