Question
Question: $I = \int e^{(x\sin x+\cos x)} \left( \frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right)...
I=∫e(xsinx+cosx)(x2cos2xx4cos3x−xsinx+cosx)dx, then I equals -

e(xsinx+cosx)(x−xsecx)+c
exsinx+cosx(xsinx−xcosx)+c
exsinx+cosx(tanxx−xsecx)+c
xexsinx−cosx−exsinx+cosx⋅xcosx1+c
A
Solution
The integral to be evaluated is I=∫e(xsinx+cosx)(x2cos2xx4cos3x−xsinx+cosx)dx.
This integral is of the form ∫eg(x)[f(x)g′(x)+f′(x)]dx=eg(x)f(x)+C.
First, let's identify g(x) and g′(x):
Let g(x)=xsinx+cosx.
Then, g′(x)=dxd(xsinx+cosx)=(1⋅sinx+xcosx)−sinx=xcosx.
Next, let's simplify the expression inside the parenthesis:
x2cos2xx4cos3x−xsinx+cosx
We can split the fraction into individual terms:
=x2cos2xx4cos3x−x2cos2xxsinx+x2cos2xcosx
=x2cosx−xcos2xsinx+x2cosx1
Now, we need to find an f(x) such that f(x)g′(x)+f′(x) equals the simplified expression above. Let's test the options.
Consider Option (A): e(xsinx+cosx)(x−xsecx)+c.
Here, f(x)=x−xsecx.
Let's calculate f(x)g′(x):
f(x)g′(x)=(x−xsecx)(xcosx)
=x(xcosx)−xsecx(xcosx)
=x2cosx−secxcosx
Since secx=cosx1, we have secxcosx=1.
So, f(x)g′(x)=x2cosx−1.
Now, let's calculate f′(x):
f′(x)=dxd(x−xsecx)
f′(x)=dxd(x)−dxd(xsecx)
Using the quotient rule for xsecx: dxd(vu)=v2u′v−uv′, where u=secx and v=x.
u′=secxtanx, v′=1.
dxd(xsecx)=x2(secxtanx)x−(secx)(1)=x2xsecxtanx−secx.
So, f′(x)=1−x2xsecxtanx−secx.
Now, let's sum f(x)g′(x)+f′(x):
f(x)g′(x)+f′(x)=(x2cosx−1)+(1−x2xsecxtanx−secx)
=x2cosx−x2xsecxtanx−secx
To compare this with the integrand, let's express secx and tanx in terms of sinx and cosx:
secx=cosx1 and tanx=cosxsinx.
So, x2xsecxtanx−secx=x2xcosx1cosxsinx−cosx1
=x2cos2xxsinx−cosx1
=x2cos2xxsinx−cosx
=x2cos2xxsinx−cosx.
Substitute this back into the sum:
f(x)g′(x)+f′(x)=x2cosx−(x2cos2xxsinx−cosx)
=x2cosx−x2cos2xxsinx+x2cos2xcosx
=x2cosx−xcos2xsinx+x2cosx1.
This expression exactly matches the simplified integrand.
Therefore, the integral I=eg(x)f(x)+C=e(xsinx+cosx)(x−xsecx)+c.