Solveeit Logo

Question

Question: $I = \int e^{(x\sin x+\cos x)} \left( \frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right)...

I=e(xsinx+cosx)(x4cos3xxsinx+cosxx2cos2x)dxI = \int e^{(x\sin x+\cos x)} \left( \frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right) dx, then I equals -

A

e(xsinx+cosx)(xsecxx)+ce^{(x\sin x+\cos x)} \left( x - \frac{\sec x}{x} \right) + c

B

exsinx+cosx(xsinxcosxx)+ce^{x\sin x + \cos x} \left( x \sin x - \frac{\cos x}{x} \right) + c

C

exsinx+cosx(xtanxsecxx)+ce^{x\sin x + \cos x} \left( \frac{x}{\tan x} - \frac{\sec x}{x} \right) + c

D

xexsinxcosxexsinx+cosx1xcosx+cxe^{x\sin x - \cos x} - e^{x\sin x + \cos x} \cdot \frac{1}{x \cos x} + c

Answer

A

Explanation

Solution

The integral to be evaluated is I=e(xsinx+cosx)(x4cos3xxsinx+cosxx2cos2x)dxI = \int e^{(x\sin x+\cos x)} \left( \frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right) dx.

This integral is of the form eg(x)[f(x)g(x)+f(x)]dx=eg(x)f(x)+C\int e^{g(x)} [f(x)g'(x) + f'(x)] dx = e^{g(x)} f(x) + C.

First, let's identify g(x)g(x) and g(x)g'(x):
Let g(x)=xsinx+cosxg(x) = x\sin x + \cos x.
Then, g(x)=ddx(xsinx+cosx)=(1sinx+xcosx)sinx=xcosxg'(x) = \frac{d}{dx}(x\sin x + \cos x) = (1 \cdot \sin x + x \cos x) - \sin x = x \cos x.

Next, let's simplify the expression inside the parenthesis:
x4cos3xxsinx+cosxx2cos2x\frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x}
We can split the fraction into individual terms:
=x4cos3xx2cos2xxsinxx2cos2x+cosxx2cos2x= \frac{x^4 \cos^3 x}{x^2 \cos^2 x} - \frac{x \sin x}{x^2 \cos^2 x} + \frac{\cos x}{x^2 \cos^2 x}
=x2cosxsinxxcos2x+1x2cosx= x^2 \cos x - \frac{\sin x}{x \cos^2 x} + \frac{1}{x^2 \cos x}

Now, we need to find an f(x)f(x) such that f(x)g(x)+f(x)f(x)g'(x) + f'(x) equals the simplified expression above. Let's test the options.

Consider Option (A): e(xsinx+cosx)(xsecxx)+ce^{(x\sin x+\cos x)} \left( x - \frac{\sec x}{x} \right) + c.
Here, f(x)=xsecxxf(x) = x - \frac{\sec x}{x}.

Let's calculate f(x)g(x)f(x)g'(x):
f(x)g(x)=(xsecxx)(xcosx)f(x)g'(x) = \left( x - \frac{\sec x}{x} \right) (x \cos x)
=x(xcosx)secxx(xcosx)= x(x \cos x) - \frac{\sec x}{x} (x \cos x)
=x2cosxsecxcosx= x^2 \cos x - \sec x \cos x
Since secx=1cosx\sec x = \frac{1}{\cos x}, we have secxcosx=1\sec x \cos x = 1.
So, f(x)g(x)=x2cosx1f(x)g'(x) = x^2 \cos x - 1.

Now, let's calculate f(x)f'(x):
f(x)=ddx(xsecxx)f'(x) = \frac{d}{dx} \left( x - \frac{\sec x}{x} \right)
f(x)=ddx(x)ddx(secxx)f'(x) = \frac{d}{dx}(x) - \frac{d}{dx}\left(\frac{\sec x}{x}\right)
Using the quotient rule for secxx\frac{\sec x}{x}: ddx(uv)=uvuvv2\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}, where u=secxu = \sec x and v=xv = x.
u=secxtanxu' = \sec x \tan x, v=1v' = 1.
ddx(secxx)=(secxtanx)x(secx)(1)x2=xsecxtanxsecxx2\frac{d}{dx}\left(\frac{\sec x}{x}\right) = \frac{(\sec x \tan x)x - (\sec x)(1)}{x^2} = \frac{x \sec x \tan x - \sec x}{x^2}.
So, f(x)=1xsecxtanxsecxx2f'(x) = 1 - \frac{x \sec x \tan x - \sec x}{x^2}.

Now, let's sum f(x)g(x)+f(x)f(x)g'(x) + f'(x):
f(x)g(x)+f(x)=(x2cosx1)+(1xsecxtanxsecxx2)f(x)g'(x) + f'(x) = (x^2 \cos x - 1) + \left( 1 - \frac{x \sec x \tan x - \sec x}{x^2} \right)
=x2cosxxsecxtanxsecxx2= x^2 \cos x - \frac{x \sec x \tan x - \sec x}{x^2}
To compare this with the integrand, let's express secx\sec x and tanx\tan x in terms of sinx\sin x and cosx\cos x:
secx=1cosx\sec x = \frac{1}{\cos x} and tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}.
So, xsecxtanxsecxx2=x1cosxsinxcosx1cosxx2\frac{x \sec x \tan x - \sec x}{x^2} = \frac{x \frac{1}{\cos x} \frac{\sin x}{\cos x} - \frac{1}{\cos x}}{x^2}
=xsinxcos2x1cosxx2= \frac{\frac{x \sin x}{\cos^2 x} - \frac{1}{\cos x}}{x^2}
=xsinxcosxcos2xx2= \frac{\frac{x \sin x - \cos x}{\cos^2 x}}{x^2}
=xsinxcosxx2cos2x= \frac{x \sin x - \cos x}{x^2 \cos^2 x}.

Substitute this back into the sum:
f(x)g(x)+f(x)=x2cosx(xsinxcosxx2cos2x)f(x)g'(x) + f'(x) = x^2 \cos x - \left( \frac{x \sin x - \cos x}{x^2 \cos^2 x} \right)
=x2cosxxsinxx2cos2x+cosxx2cos2x= x^2 \cos x - \frac{x \sin x}{x^2 \cos^2 x} + \frac{\cos x}{x^2 \cos^2 x}
=x2cosxsinxxcos2x+1x2cosx= x^2 \cos x - \frac{\sin x}{x \cos^2 x} + \frac{1}{x^2 \cos x}.

This expression exactly matches the simplified integrand.
Therefore, the integral I=eg(x)f(x)+C=e(xsinx+cosx)(xsecxx)+cI = e^{g(x)} f(x) + C = e^{(x\sin x+\cos x)} \left( x - \frac{\sec x}{x} \right) + c.