Solveeit Logo

Question

Question: A rod of length L & uniform cross-section area A having volume mass density $\rho'$ = 6$\rho$x/L is ...

A rod of length L & uniform cross-section area A having volume mass density ρ\rho' = 6ρ\rhox/L is immersed in a liquid of density ρ\rho by means of two massless strings 1 and 2 as shown. String 1 is connected to the rod at x = 0. Find the tensions in string 1.

Answer

12ρALg\frac{1}{2}\rho A L g

Explanation

Solution

  1. Weight and Center of Mass: The mass of an infinitesimal element of length dxdx is dm=ρ(x)Adx=6ρAxLdxdm = \rho'(x) A dx = \frac{6\rho A x}{L} dx. The total weight of the rod is W=0Ldmg=0L6ρAgLxdx=3ρALgW = \int_0^L dm \cdot g = \int_0^L \frac{6\rho A g}{L} x dx = 3\rho A L g. The center of mass xcmx_{cm} is xcm=0Lxdm0Ldm=2L3x_{cm} = \frac{\int_0^L x dm}{\int_0^L dm} = \frac{2L}{3}.

  2. Buoyant Force: The volume of the rod is V=ALV = AL. The buoyant force is FB=ρVg=ρALgF_B = \rho V g = \rho A L g. It acts at the geometric center (x=L/2x=L/2).

  3. Force Equilibrium: T1+T2+FB=WT_1 + T_2 + F_B = W T1+T2+ρALg=3ρALg    T1+T2=2ρALgT_1 + T_2 + \rho A L g = 3\rho A L g \implies T_1 + T_2 = 2\rho A L g

  4. Torque Equilibrium (about x=0): T2LWxcm+FB(L/2)=0T_2 \cdot L - W \cdot x_{cm} + F_B \cdot (L/2) = 0 T2L(3ρALg)(2L/3)+(ρALg)(L/2)=0T_2 \cdot L - (3\rho A L g) \cdot (2L/3) + (\rho A L g) \cdot (L/2) = 0 T2L2ρAL2g+12ρAL2g=0T_2 \cdot L - 2\rho A L^2 g + \frac{1}{2}\rho A L^2 g = 0 T2L=32ρAL2g    T2=32ρALgT_2 \cdot L = \frac{3}{2}\rho A L^2 g \implies T_2 = \frac{3}{2}\rho A L g

  5. Solve for T1T_1: T1+32ρALg=2ρALg    T1=12ρALgT_1 + \frac{3}{2}\rho A L g = 2\rho A L g \implies T_1 = \frac{1}{2}\rho A L g.