Solveeit Logo

Question

Question: A quantity of 5.0 g of a mixture of He and another gas occupies a volume of 2.4 L at 300 K and 760 m...

A quantity of 5.0 g of a mixture of He and another gas occupies a volume of 2.4 L at 300 K and 760 mm Hg. The gas freezes at 270 K. At 15 K, the pressure of the gas mixture is 19 mm Hg (at the same volume). What is the molecular mass of the gas?

A

96

B

4.0

C

48

D

192

Answer

96

Explanation

Solution

The key insight is that at 15 K, only Helium contributes to the pressure because the other gas freezes.

  1. Moles of Helium (nHen_{He}): At 15 K, PHe=19 mm HgP_{He} = 19 \text{ mm Hg}, V=2.4 LV = 2.4 \text{ L}, T=15 KT = 15 \text{ K}. Using PV=nRTPV = nRT with R=62.36 L mm Hg K1 mol1R = 62.36 \text{ L mm Hg K}^{-1} \text{ mol}^{-1}: nHe=19×2.462.36×150.04875 moln_{He} = \frac{19 \times 2.4}{62.36 \times 15} \approx 0.04875 \text{ mol}

  2. Mass of Helium (mHem_{He}): mHe=nHe×MHe=0.04875 mol×4.0 g/mol=0.195 gm_{He} = n_{He} \times M_{He} = 0.04875 \text{ mol} \times 4.0 \text{ g/mol} = 0.195 \text{ g}

  3. Mass of Unknown Gas (munknownm_{unknown}): munknown=5.0 gmHe=5.0 g0.195 g=4.805 gm_{unknown} = 5.0 \text{ g} - m_{He} = 5.0 \text{ g} - 0.195 \text{ g} = 4.805 \text{ g}

  4. Total Moles (ntotaln_{total}) at 300 K: At 300 K, Ptotal=760 mm HgP_{total} = 760 \text{ mm Hg}, V=2.4 LV = 2.4 \text{ L}, T=300 KT = 300 \text{ K}. ntotal=760×2.462.36×3000.0975 moln_{total} = \frac{760 \times 2.4}{62.36 \times 300} \approx 0.0975 \text{ mol}

  5. Moles of Unknown Gas (nunknownn_{unknown}): nunknown=ntotalnHe=0.0975 mol0.04875 mol=0.04875 moln_{unknown} = n_{total} - n_{He} = 0.0975 \text{ mol} - 0.04875 \text{ mol} = 0.04875 \text{ mol}

  6. Molecular Mass of Unknown Gas (MunknownM_{unknown}): Munknown=munknownnunknown=4.805 g0.04875 mol98.56 g/molM_{unknown} = \frac{m_{unknown}}{n_{unknown}} = \frac{4.805 \text{ g}}{0.04875 \text{ mol}} \approx 98.56 \text{ g/mol}

    The closest option is 96.