Solveeit Logo

Question

Question: The integral $\int (\frac{x}{x \sin x + \cos x})^2 dx$ is equal to: (2020) (where C is a constant o...

The integral (xxsinx+cosx)2dx\int (\frac{x}{x \sin x + \cos x})^2 dx is equal to: (2020)

(where C is a constant of integration):

A

tanxxsecxxsinx+cosx+C\tan x - \frac{x \sec x}{x \sin x + \cos x} + C

B

tanx+xsecxxsinx+cosx+C\tan x + \frac{x \sec x}{x \sin x + \cos x} + C

C

secxxtanxxsinx+cosx+C\sec x - \frac{x \tan x}{x \sin x + \cos x} + C

D

secx+xtanxxsinx+cosx+C\sec x + \frac{x \tan x}{x \sin x + \cos x} + C

Answer

tanxxsecxxsinx+cosx+C\tan x - \frac{x \sec x}{x \sin x + \cos x} + C

Explanation

Solution

To evaluate the integral I=(xxsinx+cosx)2dxI = \int \left(\frac{x}{x \sin x + \cos x}\right)^2 dx, we can use the method of integration by parts.

Let's denote the expression in the denominator as f(x)=xsinx+cosxf(x) = x \sin x + \cos x. First, find the derivative of f(x)f(x): f(x)=ddx(xsinx+cosx)f'(x) = \frac{d}{dx}(x \sin x + \cos x) Using the product rule for xsinxx \sin x: ddx(xsinx)=1sinx+xcosx\frac{d}{dx}(x \sin x) = 1 \cdot \sin x + x \cdot \cos x. Using the derivative for cosx\cos x: ddx(cosx)=sinx\frac{d}{dx}(\cos x) = -\sin x. So, f(x)=(sinx+xcosx)sinx=xcosxf'(x) = (\sin x + x \cos x) - \sin x = x \cos x.

Now, rewrite the integrand in a form suitable for integration by parts. The integrand is x2(xsinx+cosx)2\frac{x^2}{(x \sin x + \cos x)^2}. We can write this as xcosxxcosx(xsinx+cosx)2\frac{x}{\cos x} \cdot \frac{x \cos x}{(x \sin x + \cos x)^2}. This form suggests choosing: u=xcosx=xsecxu = \frac{x}{\cos x} = x \sec x dv=xcosx(xsinx+cosx)2dx=f(x)(f(x))2dxdv = \frac{x \cos x}{(x \sin x + \cos x)^2} dx = \frac{f'(x)}{(f(x))^2} dx

Now, we find dudu and vv: du=ddx(xsecx)dx=(1secx+xsecxtanx)dx=(secx+xsecxtanx)dxdu = \frac{d}{dx}(x \sec x) dx = (1 \cdot \sec x + x \cdot \sec x \tan x) dx = (\sec x + x \sec x \tan x) dx. v=f(x)(f(x))2dxv = \int \frac{f'(x)}{(f(x))^2} dx. Let t=f(x)t = f(x), then dt=f(x)dxdt = f'(x) dx. So v=1t2dt=1t=1xsinx+cosxv = \int \frac{1}{t^2} dt = -\frac{1}{t} = -\frac{1}{x \sin x + \cos x}.

Apply the integration by parts formula: udv=uvvdu\int u dv = uv - \int v du. I=(xsecx)(1xsinx+cosx)(1xsinx+cosx)(secx+xsecxtanx)dxI = (x \sec x) \left(-\frac{1}{x \sin x + \cos x}\right) - \int \left(-\frac{1}{x \sin x + \cos x}\right) (\sec x + x \sec x \tan x) dx I=xsecxxsinx+cosx+secx+xsecxtanxxsinx+cosxdxI = -\frac{x \sec x}{x \sin x + \cos x} + \int \frac{\sec x + x \sec x \tan x}{x \sin x + \cos x} dx

Now, let's evaluate the remaining integral J=secx+xsecxtanxxsinx+cosxdxJ = \int \frac{\sec x + x \sec x \tan x}{x \sin x + \cos x} dx. Simplify the numerator: secx+xsecxtanx=1cosx+x1cosxsinxcosx\sec x + x \sec x \tan x = \frac{1}{\cos x} + x \frac{1}{\cos x} \frac{\sin x}{\cos x} =cosxcos2x+xsinxcos2x=cosx+xsinxcos2x= \frac{\cos x}{\cos^2 x} + \frac{x \sin x}{\cos^2 x} = \frac{\cos x + x \sin x}{\cos^2 x}

Substitute this back into the integral JJ: J=cosx+xsinxcos2xxsinx+cosxdxJ = \int \frac{\frac{\cos x + x \sin x}{\cos^2 x}}{x \sin x + \cos x} dx Assuming xsinx+cosx0x \sin x + \cos x \neq 0, we can cancel the term (cosx+xsinx)(\cos x + x \sin x) from the numerator and denominator: J=1cos2xdx=sec2xdxJ = \int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx J=tanx+CJ = \tan x + C' (where CC' is the constant of integration for JJ)

Substitute JJ back into the expression for II: I=xsecxxsinx+cosx+tanx+CI = -\frac{x \sec x}{x \sin x + \cos x} + \tan x + C

Rearranging the terms, we get: I=tanxxsecxxsinx+cosx+CI = \tan x - \frac{x \sec x}{x \sin x + \cos x} + C

Comparing this result with the given options, our result matches option (A).