Solveeit Logo

Question

Question: Let x, y be real variable satisfy the x²+y²+8x-10y-40 = 0. Let a = max (√(x+2)²+(y-3)²) and b = (√(x...

Let x, y be real variable satisfy the x²+y²+8x-10y-40 = 0. Let a = max (√(x+2)²+(y-3)²) and b = (√(x+2)²+(y-3)²), then:

A

a+b=18

B

a+b=4√2

C

a-b=4√2

D

ab=73

Answer

(A), (C), (D)

Explanation

Solution

  1. Convert the circle equation to standard form to find its center C(4,5)C(-4, 5) and radius r=9r=9.
  2. The expression (x+2)2+(y3)2\sqrt{(x+2)^2+(y-3)^2} is the distance dd from a point P(x,y)P(x,y) on the circle to the fixed point Q(2,3)Q(-2,3).
  3. Calculate the distance DCQD_{CQ} between the circle's center CC and the point QQ: DCQ=22D_{CQ} = 2\sqrt{2}.
  4. The maximum distance aa is DCQ+r=22+9D_{CQ} + r = 2\sqrt{2} + 9.
  5. The minimum distance bb is DCQr=229=922|D_{CQ} - r| = |2\sqrt{2} - 9| = 9 - 2\sqrt{2}.
  6. Verify the options using the calculated values of aa and bb.