Solveeit Logo

Question

Question: Let chord of contact is drawn from every point lying on circle \(x^2 + y^2 = 100\) to the ellipse \(...

Let chord of contact is drawn from every point lying on circle x2+y2=100x^2 + y^2 = 100 to the ellipse x24+y29=1\frac{x^2}{4} + \frac{y^2}{9} = 1 such that all the lines touches a standard ellipse whose eccentricity is ee, then 9e213\frac{9e^2}{13} is

Answer

59\displaystyle \frac{5}{9}

Explanation

Solution

1. Equation of chord of contact.
From point (h,k)(h,k) to ellipse x24+y29=1\frac{x^2}{4} + \frac{y^2}{9}=1:

hx4+ky9=1.\frac{h\,x}{4} + \frac{k\,y}{9} = 1.

2. Envelope condition.
This family of lines is tangent to the circle x2+y2=100x^2 + y^2 = 100.
Compare h4x+k9y=1\frac{h}{4}x + \frac{k}{9}y =1 with y=mx+cy=mx+c:

m=h/4k/9=9h4k,c=1k/9=9k.m = -\frac{h/4}{k/9} = -\frac{9h}{4k},\quad c = \frac{1}{k/9} = \frac{9}{k}.

Tangent to circle x2+y2=102x^2+y^2=10^2 satisfies 10=c1+m210 = \frac{|c|}{\sqrt{1+m^2}}.
Squaring gives

100=c21+m2=(9k)21+(9h4k)2=81/k21+81h216k2=81k2+8116h2.100 = \frac{c^2}{1+m^2} = \frac{\bigl(\tfrac{9}{k}\bigr)^2}{1 + \bigl(\tfrac{9h}{4k}\bigr)^2} = \frac{81/k^2}{1 + \frac{81h^2}{16k^2}} = \frac{81}{k^2 + \tfrac{81}{16}h^2}.

Thus

k2+8116h2=81100    h216100+k281100=1.k^2 + \frac{81}{16}h^2 = \frac{81}{100} \;\Longrightarrow\; \frac{h^2}{\tfrac{16}{100}} + \frac{k^2}{\tfrac{81}{100}} = 1.

This is an ellipse with semi‑axes a=410,b=910a=\tfrac{4}{10},\,b=\tfrac{9}{10}.
Its eccentricity

e=1a2b2=1(4/10)2(9/10)2=11681=659.e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{(4/10)^2}{(9/10)^2}} = \sqrt{1 - \frac{16}{81}} = \frac{\sqrt{65}}{9}.

3. Compute 9e213\tfrac{9e^2}{13}.

e2=6581    9e213=9658113=65117=59.e^2 = \frac{65}{81} \;\Longrightarrow\; \frac{9e^2}{13} = \frac{9\cdot\frac{65}{81}}{13} = \frac{65}{117} = \frac{5}{9}.