Solveeit Logo

Question

Question: If $\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$,...

If [3141]X=[5123]\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}, then X=X =

A

[341413]\begin{bmatrix} -3 & 4 \\ 14 & -13 \end{bmatrix}

B

[341413]\begin{bmatrix} 3 & -4 \\ -14 & 13 \end{bmatrix}

C

[341413]\begin{bmatrix} 3 & 4 \\ 14 & 13 \end{bmatrix}

D

[341413]\begin{bmatrix} -3 & 4 \\ -14 & 13 \end{bmatrix}

Answer

[341413]\begin{bmatrix} -3 & 4 \\ 14 & -13 \end{bmatrix}

Explanation

Solution

We have [3141]X=[5123]\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}.

Let A=[3141]A = \begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} and Y=[5123]Y = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}. Then, X=A1YX = A^{-1}Y where det(A)=3141=1\text{det}(A) = 3\cdot1 - 4\cdot1 = -1.

The inverse of AA is given by: A1=11[1143]=[1143]A^{-1} = \frac{1}{-1}\begin{bmatrix} 1 & -1 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 4 & -3 \end{bmatrix}.

Now, multiply: X=[1143][5123]X = \begin{bmatrix} -1 & 1 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}.

Calculate each entry:

  • Top-left: (1)(5)+12=5+2=3(-1)(5)+1\cdot2 = -5+2 = -3.
  • Top-right: (1)(1)+13=1+3=4(-1)(-1)+1\cdot3 = 1+3 = 4.
  • Bottom-left: 4(5)+(3)(2)=206=144(5)+(-3)(2) = 20-6 = 14.
  • Bottom-right: 4(1)+(3)(3)=49=134(-1)+(-3)(3) = -4-9 = -13.

Thus, X=[341413]X=\begin{bmatrix} -3 & 4 \\ 14 & -13 \end{bmatrix}.