Question
Question: If $\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$,...
If [3411]X=[52−13], then X=

A
[−3144−13]
B
[3−14−413]
C
[314413]
D
[−3−14413]
Answer
[−3144−13]
Explanation
Solution
We have [3411]X=[52−13].
Let A=[3411] and Y=[52−13]. Then, X=A−1Y where det(A)=3⋅1−4⋅1=−1.
The inverse of A is given by: A−1=−11[1−4−13]=[−141−3].
Now, multiply: X=[−141−3][52−13].
Calculate each entry:
- Top-left: (−1)(5)+1⋅2=−5+2=−3.
- Top-right: (−1)(−1)+1⋅3=1+3=4.
- Bottom-left: 4(5)+(−3)(2)=20−6=14.
- Bottom-right: 4(−1)+(−3)(3)=−4−9=−13.
Thus, X=[−3144−13].