Question
Question: $\cos x \cdot \cos 7x - \cos 5x \cdot \cos 13x =$...
cosx⋅cos7x−cos5x⋅cos13x=

2cos26x⋅cos12x
2sin6x⋅sin12x
2sin6x⋅cos12x
2sin26x⋅cos6x
(b)
Solution
To simplify the expression cosx⋅cos7x−cos5x⋅cos13x, we use the product-to-sum trigonometric identity:
2cosAcosB=cos(A+B)+cos(A−B)
This can be rewritten as cosAcosB=21[cos(A+B)+cos(A−B)].
-
Simplify the first term, cosx⋅cos7x: Let A=x and B=7x. cosx⋅cos7x=21[cos(x+7x)+cos(x−7x)]=21[cos(8x)+cos(−6x)]=21[cos8x+cos6x]
-
Simplify the second term, cos5x⋅cos13x: Let A=5x and B=13x. cos5x⋅cos13x=21[cos(5x+13x)+cos(5x−13x)]=21[cos(18x)+cos(−8x)]=21[cos18x+cos8x]
-
Substitute these simplified terms back into the original expression: cosx⋅cos7x−cos5x⋅cos13x=21[cos8x+cos6x]−21[cos18x+cos8x]=21[cos8x+cos6x−cos18x−cos8x]=21[cos6x−cos18x]
-
Use the sum-to-product trigonometric identity for cosC−cosD: The identity is: cosC−cosD=−2sin(2C+D)sin(2C−D). Let C=6x and D=18x. cos6x−cos18x=−2sin(26x+18x)sin(26x−18x)=−2sin(12x)sin(−6x)=2sin(12x)sin(6x)
-
Substitute this result back into the expression from Step 3: 21[cos6x−cos18x]=21[2sin(12x)sin(6x)]=sin(12x)sin(6x)
Comparing this result with the given options, we see a discrepancy of a factor of 2. Assuming a typo in the question or options, option (b) is the closest.