Solveeit Logo

Question

Question: $\cos x \cdot \cos 7x - \cos 5x \cdot \cos 13x =$...

cosxcos7xcos5xcos13x=\cos x \cdot \cos 7x - \cos 5x \cdot \cos 13x =

A

2cos26xcos12x2\cos^2 6x \cdot \cos 12x

B

2sin6xsin12x2\sin 6x \cdot \sin 12x

C

2sin6xcos12x2\sin 6x \cdot \cos 12x

D

2sin26xcos6x2\sin^2 6x \cdot \cos 6x

Answer

(b)

Explanation

Solution

To simplify the expression cosxcos7xcos5xcos13x\cos x \cdot \cos 7x - \cos 5x \cdot \cos 13x, we use the product-to-sum trigonometric identity:

2cosAcosB=cos(A+B)+cos(AB)2 \cos A \cos B = \cos(A+B) + \cos(A-B)

This can be rewritten as cosAcosB=12[cos(A+B)+cos(AB)]\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)].

  1. Simplify the first term, cosxcos7x\cos x \cdot \cos 7x: Let A=xA=x and B=7xB=7x. cosxcos7x=12[cos(x+7x)+cos(x7x)]=12[cos(8x)+cos(6x)]=12[cos8x+cos6x]\cos x \cdot \cos 7x = \frac{1}{2} [\cos(x+7x) + \cos(x-7x)] = \frac{1}{2} [\cos(8x) + \cos(-6x)] = \frac{1}{2} [\cos 8x + \cos 6x]

  2. Simplify the second term, cos5xcos13x\cos 5x \cdot \cos 13x: Let A=5xA=5x and B=13xB=13x. cos5xcos13x=12[cos(5x+13x)+cos(5x13x)]=12[cos(18x)+cos(8x)]=12[cos18x+cos8x]\cos 5x \cdot \cos 13x = \frac{1}{2} [\cos(5x+13x) + \cos(5x-13x)] = \frac{1}{2} [\cos(18x) + \cos(-8x)] = \frac{1}{2} [\cos 18x + \cos 8x]

  3. Substitute these simplified terms back into the original expression: cosxcos7xcos5xcos13x=12[cos8x+cos6x]12[cos18x+cos8x]=12[cos8x+cos6xcos18xcos8x]=12[cos6xcos18x]\cos x \cdot \cos 7x - \cos 5x \cdot \cos 13x = \frac{1}{2} [\cos 8x + \cos 6x] - \frac{1}{2} [\cos 18x + \cos 8x] = \frac{1}{2} [\cos 8x + \cos 6x - \cos 18x - \cos 8x] = \frac{1}{2} [\cos 6x - \cos 18x]

  4. Use the sum-to-product trigonometric identity for cosCcosD\cos C - \cos D: The identity is: cosCcosD=2sin(C+D2)sin(CD2)\cos C - \cos D = -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right). Let C=6xC=6x and D=18xD=18x. cos6xcos18x=2sin(6x+18x2)sin(6x18x2)=2sin(12x)sin(6x)=2sin(12x)sin(6x)\cos 6x - \cos 18x = -2 \sin \left(\frac{6x+18x}{2}\right) \sin \left(\frac{6x-18x}{2}\right) = -2 \sin (12x) \sin (-6x) = 2 \sin (12x) \sin (6x)

  5. Substitute this result back into the expression from Step 3: 12[cos6xcos18x]=12[2sin(12x)sin(6x)]=sin(12x)sin(6x)\frac{1}{2} [\cos 6x - \cos 18x] = \frac{1}{2} [2 \sin (12x) \sin (6x)] = \sin (12x) \sin (6x)

Comparing this result with the given options, we see a discrepancy of a factor of 2. Assuming a typo in the question or options, option (b) is the closest.