Solveeit Logo

Question

Question: Let $|\bar{A}_1| = 3, |\bar{A}_2| = 5$ and $|\bar{A}_1 + \bar{A}_2| = 5$. The value of $(2\bar{A}_1 ...

Let Aˉ1=3,Aˉ2=5|\bar{A}_1| = 3, |\bar{A}_2| = 5 and Aˉ1+Aˉ2=5|\bar{A}_1 + \bar{A}_2| = 5. The value of (2Aˉ1+3Aˉ2).(3Aˉ12Aˉ2)(2\bar{A}_1 + 3\bar{A}_2).(3\bar{A}_1 - 2\bar{A}_2) is :-

A

-112.5

B

-106.5

C

-118.5

D

-99.5

Answer

-118.5

Explanation

Solution

To solve the problem, we first need to find the dot product of Aˉ1\bar{A}_1 and Aˉ2\bar{A}_2 using the given magnitudes.

Given: Aˉ1=3|\bar{A}_1| = 3 Aˉ2=5|\bar{A}_2| = 5 Aˉ1+Aˉ2=5|\bar{A}_1 + \bar{A}_2| = 5

We know the formula for the magnitude of the sum of two vectors: Aˉ1+Aˉ22=Aˉ12+Aˉ22+2Aˉ1Aˉ2|\bar{A}_1 + \bar{A}_2|^2 = |\bar{A}_1|^2 + |\bar{A}_2|^2 + 2\bar{A}_1 \cdot \bar{A}_2

Substitute the given values into the formula: 52=32+52+2Aˉ1Aˉ25^2 = 3^2 + 5^2 + 2\bar{A}_1 \cdot \bar{A}_2 25=9+25+2Aˉ1Aˉ225 = 9 + 25 + 2\bar{A}_1 \cdot \bar{A}_2 25=34+2Aˉ1Aˉ225 = 34 + 2\bar{A}_1 \cdot \bar{A}_2

Now, solve for 2Aˉ1Aˉ22\bar{A}_1 \cdot \bar{A}_2: 2Aˉ1Aˉ2=25342\bar{A}_1 \cdot \bar{A}_2 = 25 - 34 2Aˉ1Aˉ2=92\bar{A}_1 \cdot \bar{A}_2 = -9 Aˉ1Aˉ2=92=4.5\bar{A}_1 \cdot \bar{A}_2 = -\frac{9}{2} = -4.5

Next, we need to evaluate the expression (2Aˉ1+3Aˉ2).(3Aˉ12Aˉ2)(2\bar{A}_1 + 3\bar{A}_2).(3\bar{A}_1 - 2\bar{A}_2). We can expand this dot product using the distributive property, similar to algebraic multiplication: (2Aˉ1+3Aˉ2).(3Aˉ12Aˉ2)=(2Aˉ1)(3Aˉ1)+(2Aˉ1)(2Aˉ2)+(3Aˉ2)(3Aˉ1)+(3Aˉ2)(2Aˉ2)(2\bar{A}_1 + 3\bar{A}_2).(3\bar{A}_1 - 2\bar{A}_2) = (2\bar{A}_1) \cdot (3\bar{A}_1) + (2\bar{A}_1) \cdot (-2\bar{A}_2) + (3\bar{A}_2) \cdot (3\bar{A}_1) + (3\bar{A}_2) \cdot (-2\bar{A}_2) =6(Aˉ1Aˉ1)4(Aˉ1Aˉ2)+9(Aˉ2Aˉ1)6(Aˉ2Aˉ2)= 6(\bar{A}_1 \cdot \bar{A}_1) - 4(\bar{A}_1 \cdot \bar{A}_2) + 9(\bar{A}_2 \cdot \bar{A}_1) - 6(\bar{A}_2 \cdot \bar{A}_2)

Recall that AˉAˉ=Aˉ2\bar{A} \cdot \bar{A} = |\bar{A}|^2 and Aˉ1Aˉ2=Aˉ2Aˉ1\bar{A}_1 \cdot \bar{A}_2 = \bar{A}_2 \cdot \bar{A}_1. So, the expression becomes: =6Aˉ124(Aˉ1Aˉ2)+9(Aˉ1Aˉ2)6Aˉ22= 6|\bar{A}_1|^2 - 4(\bar{A}_1 \cdot \bar{A}_2) + 9(\bar{A}_1 \cdot \bar{A}_2) - 6|\bar{A}_2|^2 Combine the terms with Aˉ1Aˉ2\bar{A}_1 \cdot \bar{A}_2: =6Aˉ12+5(Aˉ1Aˉ2)6Aˉ22= 6|\bar{A}_1|^2 + 5(\bar{A}_1 \cdot \bar{A}_2) - 6|\bar{A}_2|^2

Now, substitute the known values: Aˉ1=3|\bar{A}_1| = 3, Aˉ2=5|\bar{A}_2| = 5, and Aˉ1Aˉ2=4.5\bar{A}_1 \cdot \bar{A}_2 = -4.5: =6(32)+5(4.5)6(52)= 6(3^2) + 5(-4.5) - 6(5^2) =6(9)+(22.5)6(25)= 6(9) + (-22.5) - 6(25) =5422.5150= 54 - 22.5 - 150 =54172.5= 54 - 172.5 =118.5= -118.5