Solveeit Logo

Question

Question: $\int 2 \frac{cos^2 x - sin^2 x}{cos^2 x + sin^2 x} dx =$...

2cos2xsin2xcos2x+sin2xdx=\int 2 \frac{cos^2 x - sin^2 x}{cos^2 x + sin^2 x} dx =

Answer

sin2x+C\sin2x+C

Explanation

Solution

We start with the integral

2cos2xsin2xcos2x+sin2xdx.\int 2\frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x}\,dx.

Since cos2x+sin2x=1\cos^2 x + \sin^2 x = 1, the expression simplifies to

2(cos2xsin2x)dx.\int 2(\cos^2x - \sin^2x)\,dx.

Recall the double-angle identity: cos2x=cos2xsin2x\cos 2x = \cos^2 x - \sin^2 x. Thus, the integral is

2cos2xdx.\int 2\cos2x\,dx.

Integrating, we have

2cos2xdx=212sin2x=sin2x+C.\int 2\cos2x\,dx = 2\cdot\frac{1}{2}\sin2x = \sin2x + C.

Minimal Explanation:

Use cos2x+sin2x=1\cos^2x+\sin^2x=1 and cos2x=cos2xsin2x\cos2x=\cos^2x-\sin^2x to simplify the integral to 2cos2xdx\int 2\cos2x\,dx, which integrates to sin2x+C\sin2x+C.