Solveeit Logo

Question

Question: G (3,-5, r) is centroid of triangle ABC where A (7, -8, 1), B (p,q, 5) and C (q + 1, 5p, 0) are vert...

G (3,-5, r) is centroid of triangle ABC where A (7, -8, 1), B (p,q, 5) and C (q + 1, 5p, 0) are vertices of triangle then values of p, q, r are respectively.

A
  • 4, 5, 4
B

6, 5, 4

C
  • 3, 4, 3
D
  • 2, 3, 2
Answer
  • 2, 3, 2
Explanation

Solution

The centroid G of triangle ABC is given by

G=(xA+xB+xC3,yA+yB+yC3,zA+zB+zC3)G = \left(\frac{x_A+x_B+x_C}{3}, \frac{y_A+y_B+y_C}{3}, \frac{z_A+z_B+z_C}{3}\right)

Given:

A=(7,8,1)A = (7,-8,1)

B=(p,q,5)B = (p,q,5)

C=(q+1,5p,0)C = (q+1, 5p, 0)

G=(3,5,r)G = (3,-5,r)

  1. x-coordinate:
7+p+(q+1)3=3p+q+83=3p+q+8=9p+q=1(1)\frac{7+p+(q+1)}{3} = 3 \quad \Rightarrow \quad \frac{p+q+8}{3}=3 \quad \Rightarrow \quad p+q+8=9 \quad \Rightarrow \quad p+q=1 \quad \text{(1)}
  1. y-coordinate:
8+q+5p3=55p+q8=155p+q=7(2)\frac{-8+q+5p}{3} = -5 \quad \Rightarrow \quad 5p+q-8 = -15 \quad \Rightarrow \quad 5p+q = -7 \quad \text{(2)}
  1. z-coordinate:
1+5+03=r63=rr=2\frac{1+5+0}{3} = r \quad \Rightarrow \quad \frac{6}{3} = r \quad \Rightarrow \quad r=2

Subtract equation (1) from (2):

(5p+q)(p+q)=714p=8p=2(5p+q) - (p+q) = -7 - 1 \quad \Rightarrow \quad 4p = -8 \quad \Rightarrow \quad p = -2

Substitute p=2p = -2 into equation (1):

2+q=1q=3-2 + q = 1 \quad \Rightarrow \quad q = 3

Thus, p=2p = -2, q=3q = 3, r=2r=2.