Question
Question: $\lim_{x \to 0}\frac{e-(1+2x)^{\frac{1}{2x}}}{x}$ is equal to...
limx→0xe−(1+2x)2x1 is equal to

A
e
B
0
C
e−2
D
e-e²
Answer
e
Explanation
Solution
Let y=(1+2x)2x1. We use the Taylor expansion of lny=2x1ln(1+2x). Using ln(1+u)=u−2u2+O(u3), we get ln(1+2x)=2x−2(2x)2+O(x3)=2x−2x2+O(x3). So, lny=2x1(2x−2x2+O(x3))=1−x+O(x2). Exponentiating, y=e1−x+O(x2)=e⋅e−x+O(x2). Using ez=1+z+O(z2), we get y=e(1+(−x+O(x2))+O(x2))=e(1−x+O(x2))=e−ex+O(x2). The limit becomes limx→0xe−(e−ex+O(x2))=limx→0xex−O(x2)=limx→0(e−O(x))=e.
