Solveeit Logo

Question

Question: 30. $\sqrt[3]{y\sqrt{x}}=\sqrt[6]{(x+y)^2}$, then $\frac{dy}{dx}$ is...

  1. yx3=(x+y)26\sqrt[3]{y\sqrt{x}}=\sqrt[6]{(x+y)^2}, then dydx\frac{dy}{dx} is
A

x-y

B

xy\frac{x}{y}

C

yx\frac{y}{x}

D

x+y

Answer

y(xy)2x2\frac{y(x-y)}{2x^2}

Explanation

Solution

We start with

yx3=(x+y)26.\sqrt[3]{\,y\sqrt{x}\,}=\sqrt[6]{\,(x+y)^2\,}.

A good strategy is to remove the radicals by “raising to a power.” Note that

yx3=(yx)13\sqrt[3]{y\sqrt{x}}=(y\sqrt{x})^{\frac{1}{3}}

and

(x+y)26=((x+y)2)16=(x+y)13.\sqrt[6]{(x+y)^2}=\bigl((x+y)^2\bigr)^{\frac{1}{6}}=(x+y)^{\frac{1}{3}}.

Thus our equation is

(yx)13=(x+y)13.(y\sqrt{x})^{\frac{1}{3}}=(x+y)^{\frac{1}{3}}.

Raising both sides to the power 3 gives

yx=x+y.y\sqrt{x}=x+y.

It is clearer to write the square root as a power:

yx12=x+y.y\, x^{\frac{1}{2}}=x+y.

A very neat alternative is to “raise both sides to the 6th power” directly: Since

[(yx)13]6=(yx)2=y2x,\left[(y\sqrt{x})^{\frac{1}{3}}\right]^{6}=(y\sqrt{x})^2=y^2x,

and

[(x+y)13]6=(x+y)2,\left[(x+y)^{\frac{1}{3}}\right]^6=(x+y)^2,

we have

y2x=(x+y)2.y^2x=(x+y)^2.

Either way (cube‐power or 6th‐power) you get an equivalent relation. (It is easy to check that from yx=x+yy\sqrt{x}=x+y one may recover y2x=(x+y)2y^2x=(x+y)^2.)

We now differentiate the equation obtained by the 6th–power method:

y2x=(x+y)2.(1)y^2x=(x+y)^2.\tag{1}

Differentiate (1) implicitly with respect to xx. The left‐side is a product xy2x\cdot y^2:

ddx[y2x]=y2+2xydydx.\frac{d}{dx}[y^2x]=y^2+2xy\frac{dy}{dx}.

The right–side is:

ddx[(x+y)2]=2(x+y)(1+dydx).\frac{d}{dx}[(x+y)^2]=2(x+y)(1+\frac{dy}{dx}).

So we have:

y2+2xyy=2(x+y)(1+y).y^2+2xy\,y' =2(x+y)(1+y').

Gather the terms containing yy' on one side:

2xyy2(x+y)y=2(x+y)y2.2xy\,y' - 2(x+y)y' = 2(x+y)-y^2.

Factor yy':

y[2xy2(x+y)]=2(x+y)y2.y'\Bigl[2xy-2(x+y)\Bigr]= 2(x+y)-y^2.

Thus,

y=2(x+y)y22(xy(x+y)).(2)y'=\frac{2(x+y)-y^2}{2\bigl(xy-(x+y)\bigr)}.\tag{2}

This answer, although “correct,” can be rewritten in a different form by using the original relation. (In fact, if one had instead raised

yx=x+y,y\sqrt{x}=x+y,

to the proper power and used logarithmic differentiation, one obtains after a few algebraic steps the equivalent answer)

dydx=y(xy)2x2.\frac{dy}{dx}=\frac{y(x-y)}{2x^2}.

Now, before “boxing up” our final answer we compare with the given options:

a) xyx-y  b) xy\frac{x}{y}  c) yx\frac{y}{x}  d) x+yx+y.

It is a short exercise to check (for example, at x=4x=4 one finds that the relation forces y=4y=4 so that

dydx=4(44)216=0,\frac{dy}{dx}=\frac{4(4-4)}{2\cdot16}=0,

whereas none of the options a–d gives 00 when x=4,  y=4x=4,\;y=4.)

Thus, the correct derivative is

dydx=y(xy)2x2,\boxed{\frac{dy}{dx}=\frac{y(x-y)}{2x^2}},

which is not equivalent to any of the choices (a)–(d).


Explanation (minimal):

  1. Write yx3=(yx)1/3\sqrt[3]{y\sqrt{x}}=(y\sqrt{x})^{1/3} and (x+y)26=(x+y)1/3\sqrt[6]{(x+y)^2}=(x+y)^{1/3}.
  2. Equate: (yx)1/3=(x+y)1/3(y\sqrt{x})^{1/3}=(x+y)^{1/3} ⟹ yx=x+yy\sqrt{x}=x+y.
  3. Alternatively, raise both sides to 6: y2x=(x+y)2y^2x=(x+y)^2.
  4. Differentiate implicitly:   LHS: y2+2xyyy^2+2xy\,y',   RHS: 2(x+y)(1+y)2(x+y)(1+y').
  5. Solve for yy' to get:     y=2(x+y)y22(xy(x+y))=y(xy)2x2.     y'=\frac{2(x+y)-y^2}{2\bigl(xy-(x+y)\bigr)} = \frac{y(x-y)}{2x^2}.   
  6. None of the provided options equals this expression.

Answer:
The correct derivative is

dydx=y(xy)2x2,\frac{dy}{dx}=\frac{y(x-y)}{2x^2},

so none of the listed options is correct.