Solveeit Logo

Question

Question: If a, b > 0 such that a² + 2b² = 12, then-...

If a, b > 0 such that a² + 2b² = 12, then-

A

maximum value of a + 2b is 6

B

maximum value of ab² is 8

C

maximum value of a2+b4\frac{a}{2} + \frac{b}{4} is 3

D

To get maximum

Answer

Options (A) and (B) are correct.

Explanation

Solution

Part (A): Maximum value of a + 2b

Let the expression be E1=a+2bE_1 = a + 2b.
We can use the Cauchy-Schwarz inequality.
Consider the terms aa and 2b2b. We have the constraint a2+2b2=12a^2 + 2b^2 = 12.
Rewrite 2b2b as 22b\sqrt{2} \cdot \sqrt{2}b.
Applying Cauchy-Schwarz inequality:
(x1y1+x2y2)2(x12+x22)(y12+y22)(x_1y_1 + x_2y_2)^2 \le (x_1^2 + x_2^2)(y_1^2 + y_2^2)
Let x1=1x_1 = 1, y1=ay_1 = a.
Let x2=2x_2 = \sqrt{2}, y2=2by_2 = \sqrt{2}b.
Then (1a+22b)2(12+(2)2)(a2+(2b)2)(1 \cdot a + \sqrt{2} \cdot \sqrt{2}b)^2 \le (1^2 + (\sqrt{2})^2)(a^2 + (\sqrt{2}b)^2)
(a+2b)2(1+2)(a2+2b2)(a + 2b)^2 \le (1 + 2)(a^2 + 2b^2)
(a+2b)2312(a + 2b)^2 \le 3 \cdot 12
(a+2b)236(a + 2b)^2 \le 36
Since a,b>0a, b > 0, a+2b>0a+2b > 0.
So, a+2b36a + 2b \le \sqrt{36}
a+2b6a + 2b \le 6.
The maximum value is 6.
Equality holds when y1x1=y2x2\frac{y_1}{x_1} = \frac{y_2}{x_2}, i.e., a1=2b2\frac{a}{1} = \frac{\sqrt{2}b}{\sqrt{2}}, which simplifies to a=ba = b.
Substitute a=ba=b into the constraint a2+2b2=12a^2 + 2b^2 = 12:
b2+2b2=12b^2 + 2b^2 = 12
3b2=123b^2 = 12
b2=4b^2 = 4
Since b>0b > 0, b=2b = 2.
Then a=2a = 2.
Check: a2+2b2=22+2(22)=4+8=12a^2 + 2b^2 = 2^2 + 2(2^2) = 4 + 8 = 12.
For these values, a+2b=2+2(2)=6a + 2b = 2 + 2(2) = 6.
Thus, option (A) is correct.

Part (B): Maximum value of ab²

Let the expression be E2=ab2E_2 = ab^2.
We can use the AM-GM inequality.
We have a2+2b2=12a^2 + 2b^2 = 12. We want to maximize ab2ab^2.
Notice that ab2=a2b4ab^2 = \sqrt{a^2 b^4}.
We can split 2b22b^2 into two equal parts: b2b^2 and b2b^2.
Consider the three terms a2a^2, b2b^2, and b2b^2.
Their sum is a2+b2+b2=a2+2b2=12a^2 + b^2 + b^2 = a^2 + 2b^2 = 12.
By AM-GM inequality:
a2+b2+b23a2b2b23\frac{a^2 + b^2 + b^2}{3} \ge \sqrt[3]{a^2 \cdot b^2 \cdot b^2}
123a2b43\frac{12}{3} \ge \sqrt[3]{a^2b^4}
4a2b434 \ge \sqrt[3]{a^2b^4}
Cube both sides:
43a2b44^3 \ge a^2b^4
64a2b464 \ge a^2b^4
Since a,b>0a, b > 0, ab2>0ab^2 > 0.
So, ab264ab^2 \le \sqrt{64}
ab28ab^2 \le 8.
The maximum value is 8.
Equality holds when a2=b2=b2a^2 = b^2 = b^2, which implies a2=b2a^2 = b^2. Since a,b>0a, b > 0, this means a=ba = b.
Substitute a=ba=b into the constraint a2+2b2=12a^2 + 2b^2 = 12:
b2+2b2=12b^2 + 2b^2 = 12
3b2=123b^2 = 12
b2=4b^2 = 4
Since b>0b > 0, b=2b = 2.
Then a=2a = 2.
Check: a2+2b2=22+2(22)=4+8=12a^2 + 2b^2 = 2^2 + 2(2^2) = 4 + 8 = 12.
For these values, ab2=2(22)=24=8ab^2 = 2 \cdot (2^2) = 2 \cdot 4 = 8.
Thus, option (B) is correct.

Part (C): Maximum value of a2+b4\frac{a}{2} + \frac{b}{4}

Let the expression be E3=a2+b4E_3 = \frac{a}{2} + \frac{b}{4}.
We can use the Cauchy-Schwarz inequality.
We have a2+2b2=12a^2 + 2b^2 = 12.
Rewrite the expression as 12a+14b\frac{1}{2}a + \frac{1}{4}b.
Consider a=xa = x and 2b=y\sqrt{2}b = y. Then x2+y2=12x^2 + y^2 = 12.
Also, b=y2b = \frac{y}{\sqrt{2}}.
So, E3=x2+y42E_3 = \frac{x}{2} + \frac{y}{4\sqrt{2}}.
Applying Cauchy-Schwarz inequality:
(x2+y42)2((12)2+(142)2)(x2+y2)(\frac{x}{2} + \frac{y}{4\sqrt{2}})^2 \le ((\frac{1}{2})^2 + (\frac{1}{4\sqrt{2}})^2)(x^2 + y^2)
(a2+b4)2(14+1162)(a2+2b2)(\frac{a}{2} + \frac{b}{4})^2 \le (\frac{1}{4} + \frac{1}{16 \cdot 2})(a^2 + 2b^2)
(a2+b4)2(14+132)(12)(\frac{a}{2} + \frac{b}{4})^2 \le (\frac{1}{4} + \frac{1}{32})(12)
(a2+b4)2(8+132)(12)(\frac{a}{2} + \frac{b}{4})^2 \le (\frac{8+1}{32})(12)
(a2+b4)293212(\frac{a}{2} + \frac{b}{4})^2 \le \frac{9}{32} \cdot 12
(a2+b4)2938(\frac{a}{2} + \frac{b}{4})^2 \le \frac{9 \cdot 3}{8}
(a2+b4)2278(\frac{a}{2} + \frac{b}{4})^2 \le \frac{27}{8}
Since a,b>0a, b > 0, a2+b4>0\frac{a}{2} + \frac{b}{4} > 0.
So, a2+b4278=278=3322=332222=364\frac{a}{2} + \frac{b}{4} \le \sqrt{\frac{27}{8}} = \frac{\sqrt{27}}{\sqrt{8}} = \frac{3\sqrt{3}}{2\sqrt{2}} = \frac{3\sqrt{3} \cdot \sqrt{2}}{2\sqrt{2} \cdot \sqrt{2}} = \frac{3\sqrt{6}}{4}.
The maximum value is 364\frac{3\sqrt{6}}{4}.
Since 62.449\sqrt{6} \approx 2.449, the maximum value is approximately 3×2.4494=7.34741.83675\frac{3 \times 2.449}{4} = \frac{7.347}{4} \approx 1.83675.
This is not 3. Thus, option (C) is incorrect.

Part (D): To get maximum

This option is incomplete and does not provide a statement or a numerical value, so it cannot be evaluated as correct.

Based on the analysis, options (A) and (B) are correct.