Solveeit Logo

Question

Question: $\frac{x^3}{\sqrt{x^2 + a^2}}$...

x3x2+a2\frac{x^3}{\sqrt{x^2 + a^2}}

Answer

13(x22a2)x2+a2+C\frac{1}{3} (x^2 - 2a^2) \sqrt{x^2 + a^2} + C

Explanation

Solution

To evaluate the integral x3x2+a2dx\int \frac{x^3}{\sqrt{x^2 + a^2}} dx, we use the method of substitution.

  1. Substitution:
    Let u=x2+a2u = x^2 + a^2.
    Differentiating both sides with respect to xx, we get du=2xdxdu = 2x \, dx.
    From this, we have xdx=12dux \, dx = \frac{1}{2} du.
    Also, from the substitution, x2=ua2x^2 = u - a^2.

  2. Rewrite the Integral:
    The integral can be written as x2xx2+a2dx\int \frac{x^2 \cdot x}{\sqrt{x^2 + a^2}} dx.
    Substitute x2=ua2x^2 = u - a^2, xdx=12dux \, dx = \frac{1}{2} du, and x2+a2=u\sqrt{x^2 + a^2} = \sqrt{u}: (ua2)u12du\int \frac{(u - a^2)}{\sqrt{u}} \cdot \frac{1}{2} du

  3. Simplify and Integrate: 12(uua2u)du=12(u1/2a2u1/2)du\frac{1}{2} \int \left( \frac{u}{\sqrt{u}} - \frac{a^2}{\sqrt{u}} \right) du = \frac{1}{2} \int (u^{1/2} - a^2 u^{-1/2}) du Now, integrate term by term: 12(u1/2+11/2+1a2u1/2+11/2+1)+C\frac{1}{2} \left( \frac{u^{1/2+1}}{1/2+1} - a^2 \frac{u^{-1/2+1}}{-1/2+1} \right) + C 12(u3/23/2a2u1/21/2)+C\frac{1}{2} \left( \frac{u^{3/2}}{3/2} - a^2 \frac{u^{1/2}}{1/2} \right) + C 12(23u3/22a2u1/2)+C\frac{1}{2} \left( \frac{2}{3} u^{3/2} - 2a^2 u^{1/2} \right) + C 13u3/2a2u1/2+C\frac{1}{3} u^{3/2} - a^2 u^{1/2} + C

  4. Substitute Back:
    Replace uu with x2+a2x^2 + a^2: 13(x2+a2)3/2a2(x2+a2)1/2+C\frac{1}{3} (x^2 + a^2)^{3/2} - a^2 (x^2 + a^2)^{1/2} + C

  5. Factor and Simplify:
    Factor out (x2+a2)1/2(x^2 + a^2)^{1/2}: (x2+a2)1/2[13(x2+a2)a2]+C(x^2 + a^2)^{1/2} \left[ \frac{1}{3} (x^2 + a^2) - a^2 \right] + C x2+a2[x2+a23a23]+C\sqrt{x^2 + a^2} \left[ \frac{x^2 + a^2 - 3a^2}{3} \right] + C x2+a2[x22a23]+C\sqrt{x^2 + a^2} \left[ \frac{x^2 - 2a^2}{3} \right] + C 13(x22a2)x2+a2+C\frac{1}{3} (x^2 - 2a^2) \sqrt{x^2 + a^2} + C