Solveeit Logo

Question

Question: What can you say about the roots of the following equations? (i) $x^2 + 2(3a + 5)x + 2(9a^2 + 25) =...

What can you say about the roots of the following equations?

(i) x2+2(3a+5)x+2(9a2+25)=0x^2 + 2(3a + 5)x + 2(9a^2 + 25) = 0

(ii) (ya)(yb)+(yb)(yc)+(yc)(ya)=0(y - a)(y - b) + (y - b)(y - c) + (y - c)(y - a) = 0

Answer

(i) The roots are real and equal if a=5/3a=5/3, non-real otherwise. (ii) The roots are always real, equal if a=b=ca=b=c, distinct otherwise.

Explanation

Solution

The nature of the roots of a quadratic equation Ax2+Bx+C=0Ax^2 + Bx + C = 0 is determined by its discriminant, Δ=B24AC\Delta = B^2 - 4AC.

  • If Δ>0\Delta > 0, the roots are real and distinct.
  • If Δ=0\Delta = 0, the roots are real and equal.
  • If Δ<0\Delta < 0, the roots are non-real (complex conjugate).
  • If Δ0\Delta \ge 0, the roots are real.

Let's analyze each equation:

(i) x2+2(3a+5)x+2(9a2+25)=0x^2 + 2(3a + 5)x + 2(9a^2 + 25) = 0

This is a quadratic equation in xx with A=1A = 1, B=2(3a+5)B = 2(3a + 5), and C=2(9a2+25)C = 2(9a^2 + 25). The discriminant is Δ1=B24AC\Delta_1 = B^2 - 4AC.

Δ1=[2(3a+5)]24(1)[2(9a2+25)]\Delta_1 = [2(3a + 5)]^2 - 4(1)[2(9a^2 + 25)]

Δ1=4(3a+5)28(9a2+25)\Delta_1 = 4(3a + 5)^2 - 8(9a^2 + 25)

Δ1=4(9a2+30a+25)72a2200\Delta_1 = 4(9a^2 + 30a + 25) - 72a^2 - 200

Δ1=36a2+120a+10072a2200\Delta_1 = 36a^2 + 120a + 100 - 72a^2 - 200

Δ1=36a2+120a100\Delta_1 = -36a^2 + 120a - 100

Factor out -4:

Δ1=4(9a230a+25)\Delta_1 = -4(9a^2 - 30a + 25)

Recognize the perfect square trinomial 9a230a+25=(3a)22(3a)(5)+52=(3a5)29a^2 - 30a + 25 = (3a)^2 - 2(3a)(5) + 5^2 = (3a - 5)^2.

So, Δ1=4(3a5)2\Delta_1 = -4(3a - 5)^2.

Since (3a5)20(3a - 5)^2 \ge 0 for any real value of aa, the discriminant Δ1=4(3a5)20\Delta_1 = -4(3a - 5)^2 \le 0.

  • If Δ1=0\Delta_1 = 0, the roots are real and equal. This occurs when (3a5)2=0(3a - 5)^2 = 0, which means 3a5=03a - 5 = 0, or a=5/3a = 5/3.
  • If Δ1<0\Delta_1 < 0, the roots are non-real (complex conjugate). This occurs when (3a5)2>0(3a - 5)^2 > 0, which means 3a503a - 5 \ne 0, or a5/3a \ne 5/3.

Conclusion for (i): The roots are real and equal if a=5/3a = 5/3, and non-real (complex) if a5/3a \ne 5/3.

(ii) (ya)(yb)+(yb)(yc)+(yc)(ya)=0(y - a)(y - b) + (y - b)(y - c) + (y - c)(y - a) = 0

Expand the terms:

(y2byay+ab)+(y2cyby+bc)+(y2aycy+ca)=0(y^2 - by - ay + ab) + (y^2 - cy - by + bc) + (y^2 - ay - cy + ca) = 0

Combine like terms:

(y2+y2+y2)+(aybybycycyay)+(ab+bc+ca)=0(y^2 + y^2 + y^2) + (-ay - by - by - cy - cy - ay) + (ab + bc + ca) = 0

3y22(a+b+c)y+(ab+bc+ca)=03y^2 - 2(a + b + c)y + (ab + bc + ca) = 0

This is a quadratic equation in yy with A=3A = 3, B=2(a+b+c)B = -2(a + b + c), and C=ab+bc+caC = ab + bc + ca. The discriminant is Δ2=B24AC\Delta_2 = B^2 - 4AC.

Δ2=[2(a+b+c)]24(3)(ab+bc+ca)\Delta_2 = [-2(a + b + c)]^2 - 4(3)(ab + bc + ca)

Δ2=4(a+b+c)212(ab+bc+ca)\Delta_2 = 4(a + b + c)^2 - 12(ab + bc + ca)

Δ2=4(a2+b2+c2+2ab+2bc+2ca)12(ab+bc+ca)\Delta_2 = 4(a^2 + b^2 + c^2 + 2ab + 2bc + 2ca) - 12(ab + bc + ca)

Δ2=4a2+4b2+4c2+8ab+8bc+8ca12ab12bc12ca\Delta_2 = 4a^2 + 4b^2 + 4c^2 + 8ab + 8bc + 8ca - 12ab - 12bc - 12ca

Δ2=4a2+4b2+4c24ab4bc4ca\Delta_2 = 4a^2 + 4b^2 + 4c^2 - 4ab - 4bc - 4ca

Factor out 2:

Δ2=2(2a2+2b2+2c22ab2bc2ca)\Delta_2 = 2(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)

Rearrange the terms inside the parenthesis:

Δ2=2[(a22ab+b2)+(b22bc+c2)+(c22ca+a2)]\Delta_2 = 2[(a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2)]

Δ2=2[(ab)2+(bc)2+(ca)2]\Delta_2 = 2[(a - b)^2 + (b - c)^2 + (c - a)^2].

Since (ab)20(a - b)^2 \ge 0, (bc)20(b - c)^2 \ge 0, and (ca)20(c - a)^2 \ge 0 for any real values of a,b,ca, b, c, their sum is non-negative: (ab)2+(bc)2+(ca)20(a - b)^2 + (b - c)^2 + (c - a)^2 \ge 0. Therefore, the discriminant Δ2=2[(ab)2+(bc)2+(ca)2]0\Delta_2 = 2[(a - b)^2 + (b - c)^2 + (c - a)^2] \ge 0. Since Δ20\Delta_2 \ge 0, the roots are always real.

  • If Δ2=0\Delta_2 = 0, the roots are real and equal. This occurs when (ab)2+(bc)2+(ca)2=0(a - b)^2 + (b - c)^2 + (c - a)^2 = 0, which happens if and only if ab=0a - b = 0, bc=0b - c = 0, and ca=0c - a = 0, i.e., a=b=ca = b = c.
  • If Δ2>0\Delta_2 > 0, the roots are real and distinct. This occurs when (ab)2+(bc)2+(ca)2>0(a - b)^2 + (b - c)^2 + (c - a)^2 > 0, which happens if a,b,ca, b, c are not all equal.

Conclusion for (ii): The roots are always real. They are real and equal if a=b=ca = b = c, and real and distinct if a,b,ca, b, c are not all equal.