Solveeit Logo

Question

Question: The solution of differential equation $\frac{dy}{dx}\frac{y}{x} = -\frac{\phi(y/x)}{\phi'(y/x)}$ is...

The solution of differential equation dydxyx=ϕ(y/x)ϕ(y/x)\frac{dy}{dx}\frac{y}{x} = -\frac{\phi(y/x)}{\phi'(y/x)} is

A

xϕ(y/x)=kx\phi(y/x) = k

B

ϕ(y/x)=kx\phi(y/x) = kx

C

yϕ(y/x)=ky\phi(y/x) = k

D

ϕ(y/x)=ky\phi(y/x) = ky

Answer

A

Explanation

Solution

The given differential equation is dydxyx=ϕ(y/x)ϕ(y/x)\frac{dy}{dx}\frac{y}{x} = -\frac{\phi(y/x)}{\phi'(y/x)}.

Let's test option (A): xϕ(y/x)=kx\phi(y/x) = k. To verify this, we differentiate both sides with respect to xx. Let v=y/xv = y/x. So, xϕ(v)=kx\phi(v) = k. Using the product rule and chain rule: ddx(xϕ(v))=1ϕ(v)+xϕ(v)dvdx=0\frac{d}{dx}(x\phi(v)) = 1 \cdot \phi(v) + x \cdot \phi'(v) \frac{dv}{dx} = 0. Substitute dvdx=ddx(yx)=xdydxyx2\frac{dv}{dx} = \frac{d}{dx}\left(\frac{y}{x}\right) = \frac{x\frac{dy}{dx} - y}{x^2}: ϕ(v)+xϕ(v)(xdydxyx2)=0\phi(v) + x\phi'(v)\left(\frac{x\frac{dy}{dx} - y}{x^2}\right) = 0. ϕ(v)+ϕ(v)x(xdydxy)=0\phi(v) + \frac{\phi'(v)}{x}(x\frac{dy}{dx} - y) = 0. Multiply by xx: xϕ(v)+ϕ(v)(xdydxy)=0x\phi(v) + \phi'(v)(x\frac{dy}{dx} - y) = 0. xϕ(v)+xϕ(v)dydxyϕ(v)=0x\phi(v) + x\phi'(v)\frac{dy}{dx} - y\phi'(v) = 0. Rearrange to solve for dydx\frac{dy}{dx}: xϕ(v)dydx=yϕ(v)xϕ(v)x\phi'(v)\frac{dy}{dx} = y\phi'(v) - x\phi(v). dydx=yϕ(v)xϕ(v)xϕ(v)=yxϕ(v)ϕ(v)\frac{dy}{dx} = \frac{y\phi'(v) - x\phi(v)}{x\phi'(v)} = \frac{y}{x} - \frac{\phi(v)}{\phi'(v)}. Substituting back v=y/xv = y/x: dydx=yxϕ(y/x)ϕ(y/x)\frac{dy}{dx} = \frac{y}{x} - \frac{\phi(y/x)}{\phi'(y/x)}.

Now, we compare this derived dydx\frac{dy}{dx} with the one from the given differential equation: Derived: dydx=yxϕ(y/x)ϕ(y/x)\frac{dy}{dx} = \frac{y}{x} - \frac{\phi(y/x)}{\phi'(y/x)}. Given: dydx=xyϕ(y/x)ϕ(y/x)\frac{dy}{dx} = -\frac{x}{y}\frac{\phi(y/x)}{\phi'(y/x)}.

For these two expressions for dydx\frac{dy}{dx} to be equal, we would need: yxϕ(y/x)ϕ(y/x)=xyϕ(y/x)ϕ(y/x)\frac{y}{x} - \frac{\phi(y/x)}{\phi'(y/x)} = -\frac{x}{y}\frac{\phi(y/x)}{\phi'(y/x)}. yx=ϕ(y/x)ϕ(y/x)xyϕ(y/x)ϕ(y/x)\frac{y}{x} = \frac{\phi(y/x)}{\phi'(y/x)} - \frac{x}{y}\frac{\phi(y/x)}{\phi'(y/x)}. yx=ϕ(y/x)ϕ(y/x)(1xy)\frac{y}{x} = \frac{\phi(y/x)}{\phi'(y/x)}\left(1 - \frac{x}{y}\right). yx=ϕ(y/x)ϕ(y/x)(yxy)\frac{y}{x} = \frac{\phi(y/x)}{\phi'(y/x)}\left(\frac{y-x}{y}\right). y2x(yx)=ϕ(y/x)ϕ(y/x)\frac{y^2}{x(y-x)} = \frac{\phi(y/x)}{\phi'(y/x)}. Let v=y/xv = y/x. v2x2x(vxx)=ϕ(v)ϕ(v)\frac{v^2x^2}{x(vx-x)} = \frac{\phi(v)}{\phi'(v)}. v2x2x2(v1)=ϕ(v)ϕ(v)\frac{v^2x^2}{x^2(v-1)} = \frac{\phi(v)}{\phi'(v)}. v2v1=ϕ(v)ϕ(v)\frac{v^2}{v-1} = \frac{\phi(v)}{\phi'(v)}. This implies ϕ(v)ϕ(v)=v1v2=1v1v2\frac{\phi'(v)}{\phi(v)} = \frac{v-1}{v^2} = \frac{1}{v} - \frac{1}{v^2}. Integrating this: ϕ(v)ϕ(v)dv=(1v1v2)dv\int \frac{\phi'(v)}{\phi(v)} dv = \int \left(\frac{1}{v} - \frac{1}{v^2}\right) dv. lnϕ(v)=lnv+1v+C1\ln|\phi(v)| = \ln|v| + \frac{1}{v} + C_1. ϕ(v)=C2ve1/v\phi(v) = C_2 v e^{1/v}. So, option (A) is the solution only if ϕ(y/x)\phi(y/x) takes the specific form C2(y/x)ex/yC_2 (y/x) e^{x/y}. Since ϕ(y/x)\phi(y/x) is a generic function, this is not generally true.

However, in the context of multiple-choice questions, especially in exams, it's common for there to be a slight variation in the problem statement, or the question expects a standard form. The form dydx=yxϕ(y/x)ϕ(y/x)\frac{dy}{dx} = \frac{y}{x} - \frac{\phi(y/x)}{\phi'(y/x)} is a standard homogeneous differential equation whose solution is xϕ(y/x)=kx\phi(y/x) = k. It is highly probable that the given question intended to be this standard form.