Solveeit Logo

Question

Question: The principal solutions of tan 30 = -1 are...

The principal solutions of tan 30 = -1 are

A

{π4,7π12,11π12,π16,19π4,23π24}\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{\pi}{16}, \frac{19\pi}{4}, \frac{23\pi}{24}\right\}

B

{π4,7π12,11π12,5π4,19π12,23π12}\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}, \frac{23\pi}{12}\right\}

C

{π4,π12}\left\{\frac{\pi}{4}, \frac{\pi}{12}\right\}

D

{π4,π12,13π12,7π4,19π4,23π12}\left\{\frac{\pi}{4}, \frac{\pi}{12}, \frac{13\pi}{12}, \frac{7\pi}{4}, \frac{19\pi}{4}, \frac{23\pi}{12}\right\}

Answer

(B) {π4,7π12,11π12,5π4,19π12,23π12}\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}, \frac{23\pi}{12}\right\}

Explanation

Solution

The general solution for tanx=1\tan x = -1 is x=nπ+3π4x = n\pi + \frac{3\pi}{4}, where nn is an integer.

Here, x=3θx = 3\theta. So, 3θ=nπ+3π43\theta = n\pi + \frac{3\pi}{4}.

Dividing by 3, we get θ=nπ3+π4\theta = \frac{n\pi}{3} + \frac{\pi}{4}.

The principal solutions are the solutions in the interval [0,2π)[0, 2\pi).

We find the values of θ\theta for different integer values of nn:

For n=0n=0: θ=0π3+π4=π4\theta = \frac{0\pi}{3} + \frac{\pi}{4} = \frac{\pi}{4}.

For n=1n=1: θ=π3+π4=4π+3π12=7π12\theta = \frac{\pi}{3} + \frac{\pi}{4} = \frac{4\pi + 3\pi}{12} = \frac{7\pi}{12}.

For n=2n=2: θ=2π3+π4=8π+3π12=11π12\theta = \frac{2\pi}{3} + \frac{\pi}{4} = \frac{8\pi + 3\pi}{12} = \frac{11\pi}{12}.

For n=3n=3: θ=3π3+π4=π+π4=5π4\theta = \frac{3\pi}{3} + \frac{\pi}{4} = \pi + \frac{\pi}{4} = \frac{5\pi}{4}.

For n=4n=4: θ=4π3+π4=16π+3π12=19π12\theta = \frac{4\pi}{3} + \frac{\pi}{4} = \frac{16\pi + 3\pi}{12} = \frac{19\pi}{12}.

For n=5n=5: θ=5π3+π4=20π+3π12=23π12\theta = \frac{5\pi}{3} + \frac{\pi}{4} = \frac{20\pi + 3\pi}{12} = \frac{23\pi}{12}.

For n=6n=6: θ=6π3+π4=2π+π4>2π\theta = \frac{6\pi}{3} + \frac{\pi}{4} = 2\pi + \frac{\pi}{4} > 2\pi.

For n=1n=-1: θ=1π3+π4=4π+3π12=π12<0\theta = \frac{-1\pi}{3} + \frac{\pi}{4} = \frac{-4\pi + 3\pi}{12} = -\frac{\pi}{12} < 0.

The principal solutions are {π4,7π12,11π12,5π4,19π12,23π12}\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}, \frac{23\pi}{12}\right\}.