Question
Question: The principal solutions of tan 30 = -1 are...
The principal solutions of tan 30 = -1 are

{4π,127π,1211π,16π,419π,2423π}
{4π,127π,1211π,45π,1219π,1223π}
{4π,12π}
{4π,12π,1213π,47π,419π,1223π}
(B) {4π,127π,1211π,45π,1219π,1223π}
Solution
The general solution for tanx=−1 is x=nπ+43π, where n is an integer.
Here, x=3θ. So, 3θ=nπ+43π.
Dividing by 3, we get θ=3nπ+4π.
The principal solutions are the solutions in the interval [0,2π).
We find the values of θ for different integer values of n:
For n=0: θ=30π+4π=4π.
For n=1: θ=3π+4π=124π+3π=127π.
For n=2: θ=32π+4π=128π+3π=1211π.
For n=3: θ=33π+4π=π+4π=45π.
For n=4: θ=34π+4π=1216π+3π=1219π.
For n=5: θ=35π+4π=1220π+3π=1223π.
For n=6: θ=36π+4π=2π+4π>2π.
For n=−1: θ=3−1π+4π=12−4π+3π=−12π<0.
The principal solutions are {4π,127π,1211π,45π,1219π,1223π}.