Solveeit Logo

Question

Question: The normal to an ellipse (with eccentric $\frac{3}{4}$) at a point P on it, meets the major-axis in ...

The normal to an ellipse (with eccentric 34\frac{3}{4}) at a point P on it, meets the major-axis in G. N is foot of perpendicular from P on major-axis. Then find value of OGON\frac{OG}{ON}.

A

916\frac{9}{16}

B

169\frac{16}{9}

C

34\frac{3}{4}

D

43\frac{4}{3}

Answer

916\frac{9}{16}

Explanation

Solution

Let the ellipse be x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. For a point P(x1,y1)(x_1, y_1) on the ellipse, N is the foot of the perpendicular to the major axis, so N is (x1,0)(x_1, 0) and ON = x1|x_1|. The normal to the ellipse at P is a2xx1b2yy1=a2b2\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2. When the normal meets the major axis (y=0), we get a2xGx1=a2b2\frac{a^2x_G}{x_1} = a^2 - b^2, so xG=x1a2b2a2=x1(1b2a2)x_G = x_1 \frac{a^2 - b^2}{a^2} = x_1 \left(1 - \frac{b^2}{a^2}\right). Since e2=1b2a2e^2 = 1 - \frac{b^2}{a^2}, we have xG=x1e2x_G = x_1 e^2. Thus, OG = x1e2|x_1 e^2|. The ratio OGON=x1e2x1=e2\frac{OG}{ON} = \frac{|x_1 e^2|}{|x_1|} = e^2. Given e=34e = \frac{3}{4}, OGON=(34)2=916\frac{OG}{ON} = \left(\frac{3}{4}\right)^2 = \frac{9}{16}.