Solveeit Logo

Question

Question: The complete set of values of $\sin^8x + \cos^8x$ is [a,b]. Then (b – a) is expressed in form of $\f...

The complete set of values of sin8x+cos8x\sin^8x + \cos^8x is [a,b]. Then (b – a) is expressed in form of mn\frac{m}{n} (where m, n are coprime numbers). The value of m + n is -

A

15

B

1

C

23

D

9

Answer

15

Explanation

Solution

To find the complete set of values of sin8x+cos8x\sin^8x + \cos^8x, let y=sin8x+cos8xy = \sin^8x + \cos^8x.

We can rewrite the expression using algebraic identities. Recall that a4+b4=(a2+b2)22a2b2a^4 + b^4 = (a^2+b^2)^2 - 2a^2b^2. So, sin8x+cos8x=(sin4x)2+(cos4x)2=(sin4x+cos4x)22sin4xcos4x\sin^8x + \cos^8x = (\sin^4x)^2 + (\cos^4x)^2 = (\sin^4x + \cos^4x)^2 - 2\sin^4x \cos^4x.

First, let's simplify sin4x+cos4x\sin^4x + \cos^4x: sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x\sin^4x + \cos^4x = (\sin^2x + \cos^2x)^2 - 2\sin^2x \cos^2x Since sin2x+cos2x=1\sin^2x + \cos^2x = 1, we have: sin4x+cos4x=(1)22sin2xcos2x\sin^4x + \cos^4x = (1)^2 - 2\sin^2x \cos^2x We know that sin2x=2sinxcosx\sin 2x = 2\sin x \cos x, so sin22x=4sin2xcos2x\sin^2 2x = 4\sin^2x \cos^2x. Therefore, sin2xcos2x=sin22x4\sin^2x \cos^2x = \frac{\sin^2 2x}{4}. Substituting this into the expression for sin4x+cos4x\sin^4x + \cos^4x: sin4x+cos4x=12(sin22x4)=1sin22x2\sin^4x + \cos^4x = 1 - 2\left(\frac{\sin^2 2x}{4}\right) = 1 - \frac{\sin^2 2x}{2}.

Now substitute this back into the expression for yy: y=(1sin22x2)22sin4xcos4xy = \left(1 - \frac{\sin^2 2x}{2}\right)^2 - 2\sin^4x \cos^4x y=(1sin22x2)22(sinxcosx)4y = \left(1 - \frac{\sin^2 2x}{2}\right)^2 - 2(\sin x \cos x)^4 y=(1sin22x2)22(sin2x2)4y = \left(1 - \frac{\sin^2 2x}{2}\right)^2 - 2\left(\frac{\sin 2x}{2}\right)^4 y=(1sin22x2)22sin42x16y = \left(1 - \frac{\sin^2 2x}{2}\right)^2 - 2\frac{\sin^4 2x}{16} y=(1sin22x2)2sin42x8y = \left(1 - \frac{\sin^2 2x}{2}\right)^2 - \frac{\sin^4 2x}{8}

Let t=sin22xt = \sin^2 2x. We know that for any real xx, 0sin22x10 \le \sin^2 2x \le 1. So, 0t10 \le t \le 1. Substitute tt into the expression for yy: y=(1t2)2t28y = \left(1 - \frac{t}{2}\right)^2 - \frac{t^2}{8} y=12(t2)+(t2)2t28y = 1 - 2\left(\frac{t}{2}\right) + \left(\frac{t}{2}\right)^2 - \frac{t^2}{8} y=1t+t24t28y = 1 - t + \frac{t^2}{4} - \frac{t^2}{8} y=1t+2t2t28y = 1 - t + \frac{2t^2 - t^2}{8} y=1t+t28y = 1 - t + \frac{t^2}{8}

Let f(t)=t28t+1f(t) = \frac{t^2}{8} - t + 1. We need to find the range of f(t)f(t) for t[0,1]t \in [0, 1]. This is a quadratic function of tt, and its graph is a parabola opening upwards (since the coefficient of t2t^2 is positive, 18>0\frac{1}{8} > 0). The vertex of the parabola occurs at t=coefficient of t2×coefficient of t2=(1)2×18=114=4t = -\frac{\text{coefficient of } t}{2 \times \text{coefficient of } t^2} = -\frac{(-1)}{2 \times \frac{1}{8}} = \frac{1}{\frac{1}{4}} = 4.

Since the vertex t=4t=4 is outside the interval [0,1][0, 1] and to the right of it, the function f(t)f(t) is monotonically decreasing on the interval [0,1][0, 1]. Therefore, the maximum value of f(t)f(t) occurs at t=0t=0, and the minimum value occurs at t=1t=1.

Maximum value (bb): fmax=f(0)=10+028=1f_{max} = f(0) = 1 - 0 + \frac{0^2}{8} = 1. This occurs when sin22x=0\sin^2 2x = 0, which means sin2x=0\sin 2x = 0. For example, if x=0x=0, y=sin80+cos80=0+1=1y = \sin^8 0 + \cos^8 0 = 0 + 1 = 1.

Minimum value (aa): fmin=f(1)=11+128=18f_{min} = f(1) = 1 - 1 + \frac{1^2}{8} = \frac{1}{8}. This occurs when sin22x=1\sin^2 2x = 1, which means sin2x=±1\sin 2x = \pm 1. For example, if x=π4x=\frac{\pi}{4}, y=sin8(π4)+cos8(π4)=(12)8+(12)8=116+116=216=18y = \sin^8(\frac{\pi}{4}) + \cos^8(\frac{\pi}{4}) = \left(\frac{1}{\sqrt{2}}\right)^8 + \left(\frac{1}{\sqrt{2}}\right)^8 = \frac{1}{16} + \frac{1}{16} = \frac{2}{16} = \frac{1}{8}.

So, the complete set of values of sin8x+cos8x\sin^8x + \cos^8x is [a,b]=[18,1][a, b] = \left[\frac{1}{8}, 1\right]. We need to find (ba)(b-a). ba=118=818=78b-a = 1 - \frac{1}{8} = \frac{8-1}{8} = \frac{7}{8}.

This value is expressed in the form mn\frac{m}{n}, where m=7m=7 and n=8n=8. mm and nn are coprime numbers (7 and 8 have no common factors other than 1). We need to find the value of m+nm+n. m+n=7+8=15m+n = 7+8 = 15.