Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

3tan1a3\,\tan^{-1}a is equal to

A

tan3a+a31+3a2\tan\frac{3a+a^3}{1+3a^2}

B

tan13aa31+3a2\tan^{-1}\frac{3a-a^3}{1+3a^2}

C

tan13a+a313a2\tan^{-1}\frac{3a+a^3}{1-3a^2}

D

tan13aa313a2\tan^{-1}\frac{3a-a^3}{1-3a^2}

Answer

tan13aa313a2\tan^{-1}\frac{3a-a^3}{1-3a^2}

Explanation

Solution

We know that tan3A=3tanAtan3A13tan2A tan \,3A =\frac{ 3\,tan\,A-tan^{3}A}{1-3\,tan^{2}A} 3A=tan13tanAtan3A13tan2A\therefore 3\,A = tan^{-1} \frac{3\,tan\,A-tan^{3}A}{1-3tan^{2}A} Put tanA=atan\, A = a i.e., A=tan1aA = tan^{-1}a 3tan1a=tan13aa313a2\therefore 3tan^{-1} a = tan^{-1} \frac{3a-a^{3}}{1-3a^{2}}