Solveeit Logo

Question

Question: The velocity (v) and time (t) graph of a body in a straight line motion is shown in the figure. The ...

The velocity (v) and time (t) graph of a body in a straight line motion is shown in the figure. The point S is at 4.333 seconds. The total distance covered by the body in 6s is :

A

494\frac{49}{4}m

B

11m

C

373\frac{37}{3}m

Answer

373\frac{37}{3}m

Explanation

Solution

The problem asks for the total distance covered by a body in 6 seconds, given its velocity-time (v-t) graph. The total distance covered is the sum of the magnitudes of the areas under the v-t graph.

Let's break down the graph into distinct segments and calculate the area for each:

  1. Segment O to A (t = 0s to t = 2s):

    • This segment represents the motion from (0,0) to (2,4).
    • The shape formed with the time axis is a triangle.
    • Base of the triangle = 2s.
    • Height of the triangle = 4 m/s.
    • Area (Distance) for this segment = 12×base×height=12×2s×4 m/s=4 m\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 2 \text{s} \times 4 \text{ m/s} = 4 \text{ m}.
  2. Segment A to B (t = 2s to t = 3s):

    • This segment represents the motion from (2,4) to (3,4).
    • The shape formed with the time axis is a rectangle.
    • Base of the rectangle = 3s - 2s = 1s.
    • Height of the rectangle = 4 m/s.
    • Area (Distance) for this segment = base×height=1s×4 m/s=4 m\text{base} \times \text{height} = 1 \text{s} \times 4 \text{ m/s} = 4 \text{ m}.
  3. Segment B to D (t = 3s to t = 6s):

    • This segment goes from (3,4) to (6,-2).

    • The problem states that point S is at 4.333 seconds. We recognize 4.333 seconds as 413 s=133 s4 \frac{1}{3} \text{ s} = \frac{13}{3} \text{ s}.

    • The point S is where the velocity becomes zero. So, the line segment from B to D crosses the time axis at t=133 st = \frac{13}{3} \text{ s}. This implies that the motion changes direction at t=133 st = \frac{13}{3} \text{ s}.

    • We need to calculate the area for two sub-segments: B to S (above the axis) and S to D (below the axis).

    • Sub-segment B to S (t = 3s to t = 13/3 s):

      • This forms a triangle above the time axis.
      • Base of the triangle = 133 s3 s=1393 s=43 s\frac{13}{3} \text{ s} - 3 \text{ s} = \frac{13 - 9}{3} \text{ s} = \frac{4}{3} \text{ s}.
      • Height of the triangle (velocity at t=3s) = 4 m/s.
      • Area (Distance) for this segment = 12×base×height=12×43 s×4 m/s=166 m=83 m\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \frac{4}{3} \text{ s} \times 4 \text{ m/s} = \frac{16}{6} \text{ m} = \frac{8}{3} \text{ m}.
    • Sub-segment S to D (t = 13/3 s to t = 6s):

      • This forms a triangle below the time axis.
      • Base of the triangle = 6 s133 s=18133 s=53 s6 \text{ s} - \frac{13}{3} \text{ s} = \frac{18 - 13}{3} \text{ s} = \frac{5}{3} \text{ s}.
      • Magnitude of Height (velocity at t=6s) = 2 m/s=2 m/s|-2 \text{ m/s}| = 2 \text{ m/s}.
      • Area (Distance) for this segment = 12×base×height=12×53 s×2 m/s=53 m\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \frac{5}{3} \text{ s} \times 2 \text{ m/s} = \frac{5}{3} \text{ m}.

Total Distance Covered:

Sum the areas (distances) from all segments: Total Distance = (Distance O to A) + (Distance A to B) + (Distance B to S) + (Distance S to D) Total Distance = 4 m+4 m+83 m+53 m4 \text{ m} + 4 \text{ m} + \frac{8}{3} \text{ m} + \frac{5}{3} \text{ m} Total Distance = 8 m+8+53 m8 \text{ m} + \frac{8+5}{3} \text{ m} Total Distance = 8 m+133 m8 \text{ m} + \frac{13}{3} \text{ m} Total Distance = 243 m+133 m\frac{24}{3} \text{ m} + \frac{13}{3} \text{ m} Total Distance = 373 m\frac{37}{3} \text{ m}.

The final answer is 373\frac{37}{3}m.

Explanation of the solution: The total distance covered by the body is the sum of the magnitudes of the areas under the velocity-time graph.

  1. Calculate the area of the triangle from t=0s to t=2s: 12×2×4=4\frac{1}{2} \times 2 \times 4 = 4 m.
  2. Calculate the area of the rectangle from t=2s to t=3s: 1×4=41 \times 4 = 4 m.
  3. The point S where velocity is zero is given as t = 4.333s = 13/3 s.
  4. Calculate the area of the triangle from t=3s to t=13/3s (above axis): 12×(1333)×4=12×43×4=83\frac{1}{2} \times (\frac{13}{3} - 3) \times 4 = \frac{1}{2} \times \frac{4}{3} \times 4 = \frac{8}{3} m.
  5. Calculate the area of the triangle from t=13/3s to t=6s (below axis, take magnitude): 12×(6133)×2=12×53×2=53\frac{1}{2} \times (6 - \frac{13}{3}) \times |-2| = \frac{1}{2} \times \frac{5}{3} \times 2 = \frac{5}{3} m.
  6. Sum all the distances: 4+4+83+53=8+133=24+133=3734 + 4 + \frac{8}{3} + \frac{5}{3} = 8 + \frac{13}{3} = \frac{24+13}{3} = \frac{37}{3} m.