Solveeit Logo

Question

Question: 3 normals to parabola $y^2 = 4x$ at $A(0, 0)$, $B$, $C$ intersect at $P(4, 0)$, then match the entri...

3 normals to parabola y2=4xy^2 = 4x at A(0,0)A(0, 0), BB, CC intersect at P(4,0)P(4, 0), then match the entries:

A

Area of ABC\triangle ABC

B

Circumradius of ABC\triangle ABC

C

Inradius of ABC\triangle ABC

D

Area of PBC\triangle PBC

Answer

P -> 2, Q -> 4, R -> 1, S -> 2

Explanation

Solution

We begin with the parabola

y2=4x,y^2 = 4x,

which is conveniently parametrized as

(x,y)=(t2,2t).(x,y)=(t^2,2t).

For a point on the parabola corresponding to parameter tt, the equation of the normal is derived as follows. The tangent at (t2,2t)(t^2,2t) has slope

dydx=1t(t0),\frac{dy}{dx}=\frac{1}{t}\quad (t\neq0),

so the normal (perpendicular) has slope t-t. Its equation (through (t2,2t)(t^2,2t)) is

y2t=t(xt2)y=tx+t3+2t.y-2t=-t\,(x-t^2) \quad\Longrightarrow\quad y=-tx+t^3+2t.

We are told that three normals drawn at the points AA, BB, and CC of the parabola meet at a common point P=(4,0)P=(4,0). One of these is given as A=(0,0)A=(0,0) (for which t=0t=0). For the normal to pass through P(4,0)P(4,0) we substitute into the normal’s equation:

0=t(4)+t3+2t=t34t+2t=t32t.0=-t\,(4)+t^3+2t = t^3-4t+2t = t^3-2t.

Thus,

t(t22)=0.t(t^2-2)=0.

The three solutions are:

t=0,t=2,t=2.t=0,\quad t=\sqrt{2},\quad t=-\sqrt{2}.

This gives the points:

A=(02,20)=(0,0),A=(0^2,2\cdot 0)=(0,0), B=((2)2,22)=(2,22),B=((\sqrt{2})^2,2\sqrt{2})=(2,2\sqrt{2}), C=((2)2,2(2))=(2,22).C= ((-\sqrt{2})^2,2(-\sqrt{2}))=(2,-2\sqrt{2}).

Now we determine the required quantities.

(P) Area of ABC\triangle ABC:

Use the determinant formula:

ΔABC=12det(xBxAyByAxCxAyCyA)=12(2)(22)(2)(22).\Delta_{ABC}=\frac{1}{2}\left|\det\begin{pmatrix} x_B-x_A & y_B-y_A \\ x_C-x_A & y_C-y_A \end{pmatrix}\right|=\frac{1}{2}\Big| (2)(-2\sqrt{2})-(2)(2\sqrt{2}) \Big|.

Compute:

(2)(22)(2)(22)=4242=82.(2)(-2\sqrt{2})-(2)(2\sqrt{2})=-4\sqrt{2}-4\sqrt{2}=-8\sqrt{2}.

Taking absolute value and halving:

ΔABC=1282=42.\Delta_{ABC}=\frac{1}{2}\cdot 8\sqrt{2}=4\sqrt{2}.

Thus, (P) matches the entry 424\sqrt{2}.

(Q) Circumradius of ABC\triangle ABC:

First, find the lengths of the sides:

AB=(20)2+(220)2=4+8=23,AB=\sqrt{(2-0)^2+(2\sqrt{2}-0)^2}=\sqrt{4+8}=2\sqrt{3}, AC=(20)2+(220)2=23,AC=\sqrt{(2-0)^2+(-2\sqrt{2}-0)^2}=2\sqrt{3}, BC=(22)2+(22(22))2=(42)2=42.BC=\sqrt{(2-2)^2+(2\sqrt{2}-(-2\sqrt{2}))^2}=\sqrt{(4\sqrt{2})^2}=4\sqrt{2}.

The circumradius RR for any triangle is given by

R=abc4Δ.R=\frac{abc}{4\Delta}.

Substitute:

R=(23)(23)(42)4(42)=(43)(42)162=482162=3.R=\frac{(2\sqrt{3})(2\sqrt{3})(4\sqrt{2})}{4\cdot(4\sqrt{2})}=\frac{(4\cdot3)(4\sqrt{2})}{16\sqrt{2}}=\frac{48\sqrt{2}}{16\sqrt{2}}=3.

So, (Q) is 33.

(R) Inradius of ABC\triangle ABC:

The inradius is

r=Δs,r=\frac{\Delta}{s},

where the semiperimeter ss is

s=AB+AC+BC2=23+23+422=23+22.s=\frac{AB+AC+BC}{2}=\frac{2\sqrt{3}+2\sqrt{3}+4\sqrt{2}}{2}=2\sqrt{3}+2\sqrt{2}.

Thus,

r=422(3+2)=223+2.r=\frac{4\sqrt{2}}{2(\sqrt{3}+\sqrt{2})}=\frac{2\sqrt{2}}{\sqrt{3}+\sqrt{2}}.

Multiply numerator and denominator by 32\sqrt{3}-\sqrt{2}:

r=22(32)32=22(32)=264.r=\frac{2\sqrt{2}(\sqrt{3}-\sqrt{2})}{3-2}=2\sqrt{2}(\sqrt{3}-\sqrt{2})=2\sqrt{6}-4.

This is written as 2(62)2(\sqrt{6}-2).

(S) Area of PBC\triangle PBC:

The vertices are P=(4,0)P=(4,0), B=(2,22)B=(2,2\sqrt{2}), and C=(2,22)C=(2,-2\sqrt{2}). Notice that BB and CC lie vertically above and below (2,0)(2,0). Thus, the base BCBC is vertical with length:

BC=22(22)=42.BC=|2\sqrt{2}-(-2\sqrt{2})|=4\sqrt{2}.

The horizontal distance from PP (with x=4x=4) to the line x=2x=2 is 22. Hence,

ΔPBC=12×(42)×2=42.\Delta_{PBC}=\frac{1}{2}\times (4\sqrt{2})\times 2=4\sqrt{2}.

So, (S) again is 424\sqrt{2}.

Final Matching:

  • (P) Area of ABC\triangle ABC → 424\sqrt{2}
  • (Q) Circumradius of ABC\triangle ABC → 33
  • (R) Inradius of ABC\triangle ABC  → 2(62)2(\sqrt{6}-2)
  • (S) Area of PBC\triangle PBC     → 424\sqrt{2}