Solveeit Logo

Question

Question: Let x + y = 2 and 2x + y = 5 are internal angle bisectors of angles B and C of \u0394ABC respectivel...

Let x + y = 2 and 2x + y = 5 are internal angle bisectors of angles B and C of \u0394ABC respectively. If A(3,4), then which of the following options is/are correct?

A

Image of A about internal bisector of angle B is (-2,-1).

B

If r denotes inradius of \u0394ABC, then 2r = 3\sqrt{10}

C

Equation of BC is y = 3x + 5

D

Image of A about internal bisector of angle C is (-1,-2).

Answer

Image of A about internal bisector of angle B is (-2,-1); Equation of BC is y = 3x + 5

Explanation

Solution

Step 1. Intersection of the two bisectors gives the in‑center
Solve

{x+y=2,2x+y=5,\begin{cases} x+y=2,\\ 2x+y=5, \end{cases}

Subtracting gives x=3x=3, then y=1y=-1. So I=(3,1)I=(3,-1).

Step 2. Reflection of A(3,4)A(3,4) about line x+y2=0x+y-2=0
For line ax+by+c=0ax+by+c=0 and point (x1,y1)(x_1,y_1), the reflection is

d=ax1+by1+ca2+b2,(x,y)=(x12ad,  y12bd).d=\frac{ax_1+by_1+c}{a^2+b^2},\quad (x',y')=\bigl(x_1-2ad,\;y_1-2bd\bigr).

Here a=1,b=1,c=2a=1,b=1,c=-2:

d=3+422=2.5,(x,y)=(35,  45)=(2,1).d=\frac{3+4-2}{2}=2.5,\quad (x',y')=(3-5,\;4-5)=(-2,\,-1).

Thus (A) is true.

Step 3. Reflection of AA about 2x+y5=02x+y-5=0
Here a=2,b=1,c=5a=2,b=1,c=-5:

d=6+455=1,(x,y)=(34,  42)=(1,  2).d=\frac{6+4-5}{5}=1,\quad (x',y')=(3-4,\;4-2)=(-1,\;2).

This is not (1,2)(-1,-2), so (D) is false.

Step 4. Find B,CB,C by reflections

B=reflection of A across 2x+y5=0=(1,2),C=reflection of A across x+y2=0=(2,1).B=\text{reflection of }A\text{ across }2x+y-5=0 =(-1,2),\quad C=\text{reflection of }A\text{ across }x+y-2=0 =(-2,-1).

Step 5. Equation of BCBC
Through B(1,2)B(-1,2) and C(2,1)C(-2,-1), slope m=2(1)1(2)=3m=\frac{2-(-1)}{-1-(-2)}=3.

y2=3(x+1)    y=3x+5.y-2=3(x+1)\;\Longrightarrow\;y=3x+5.

So (C) is true.

Step 6. Inradius check
Side‑lengths:
BC=10,  CA=52,  AB=25BC=\sqrt{10},\;CA=5\sqrt2,\;AB=2\sqrt5.
Semiperimeter s=10+52+252s=\tfrac{\sqrt{10}+5\sqrt2+2\sqrt5}{2}.
Area by coordinates = 5.

r=Δs=5s0.682r1.36310.r=\frac{\Delta}{s}=\frac{5}{s}\approx0.68\quad\Longrightarrow\quad2r\approx1.36\neq3\sqrt{10}.

So (B) is false.