Solveeit Logo

Question

Question: Let the points $\left(\frac{11}{2},\alpha\right)$ lie on or inside the triangle with sides $x+y=11, ...

Let the points (112,α)\left(\frac{11}{2},\alpha\right) lie on or inside the triangle with sides x+y=11,x+2y=16x+y=11, x+2y=16 and 2x+3y=292x+3y=29. Then the product of the smallest and the largest values of α\alpha is equal to:

A

22

B

55

C

33

D

44

Answer

33

Explanation

Solution

The vertices of the triangle are A(6,5), B(4,7), and C(10,3). A point (x,y) lies on or inside the triangle if it satisfies:

  1. x+y11x+y \ge 11
  2. x+2y16x+2y \ge 16
  3. 2x+3y292x+3y \le 29

For the point (112,α)(\frac{11}{2}, \alpha), we have x=5.5x = 5.5. Substituting into the inequalities:

  1. 5.5+α11    α5.55.5 + \alpha \ge 11 \implies \alpha \ge 5.5
  2. 5.5+2α16    2α10.5    α5.255.5 + 2\alpha \ge 16 \implies 2\alpha \ge 10.5 \implies \alpha \ge 5.25
  3. 2(5.5)+3α29    11+3α29    3α18    α62(5.5) + 3\alpha \le 29 \implies 11 + 3\alpha \le 29 \implies 3\alpha \le 18 \implies \alpha \le 6

Combining these, we get 5.5α65.5 \le \alpha \le 6. The smallest value of α\alpha is 5.55.5 and the largest value is 66. The product is 5.5×6=112×6=335.5 \times 6 = \frac{11}{2} \times 6 = 33.