Solveeit Logo

Question

Question: Find the eccentricity of the locus of the incentre of triangle PS₂S₁, where e is the eccentricity of...

Find the eccentricity of the locus of the incentre of triangle PS₂S₁, where e is the eccentricity of the ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 and S₁, S₂ are its foci and P is any point on it.

A

2e1+e\sqrt{\frac{2e}{1+e}}

B

1e1+e\sqrt{\frac{1-e}{1+e}}

C

e1+e\sqrt{\frac{e}{1+e}}

D

2e1e\sqrt{\frac{2e}{1-e}}

Answer

2e1+e\sqrt{\frac{2e}{1+e}}

Explanation

Solution

The foci of the ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 are S1(ae,0)S_1(ae, 0) and S2(ae,0)S_2(-ae, 0). A point on the ellipse is P(acosθ,bsinθ)P(a \cos \theta, b \sin \theta).

The side lengths of triangle PS1S2PS_1S_2 are PS1=aaecosθPS_1 = a - ae \cos \theta, PS2=a+aecosθPS_2 = a + ae \cos \theta, and S1S2=2aeS_1S_2 = 2ae.

The incenter (h,k)(h, k) coordinates are derived using the incenter formula: h=aecosθh = ae \cos \theta and k=ebsinθ1+ek = \frac{eb \sin \theta}{1+e}.

Eliminating θ\theta from cosθ=h/(ae)\cos \theta = h/(ae) and sinθ=k(1+e)/(eb)\sin \theta = k(1+e)/(eb) using cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1 gives the locus equation: h2(ae)2+k2(eb/(1+e))2=1\frac{h^2}{(ae)^2} + \frac{k^2}{(eb/(1+e))^2} = 1.

This is an ellipse with semi-major axis A=aeA = ae and semi-minor axis B=eb1+eB = \frac{eb}{1+e}. Its eccentricity ee' is calculated as e2=1B2A2=1(eb/(1+e))2(ae)2=1b2a2(1+e)2e'^2 = 1 - \frac{B^2}{A^2} = 1 - \frac{(eb/(1+e))^2}{(ae)^2} = 1 - \frac{b^2}{a^2(1+e)^2}. Substituting b2=a2(1e2)b^2 = a^2(1-e^2) and simplifying yields e2=1a2(1e2)a2(1+e)2=(1+e)2(1e2)(1+e)2=1+2e+e21+e2(1+e)2=2e+2e2(1+e)2=2e(1+e)(1+e)2=2e1+ee'^2 = 1 - \frac{a^2(1-e^2)}{a^2(1+e)^2} = \frac{(1+e)^2 - (1-e^2)}{(1+e)^2} = \frac{1+2e+e^2-1+e^2}{(1+e)^2} = \frac{2e+2e^2}{(1+e)^2} = \frac{2e(1+e)}{(1+e)^2} = \frac{2e}{1+e}. Thus, the eccentricity of the locus of the incenter is e=2e1+ee' = \sqrt{\frac{2e}{1+e}}.