Solveeit Logo

Question

Question: Let $I_1 = \int_0^{\frac{\pi}{4}} e^{x^2} dx, I_2 = \int_0^{\frac{\pi}{4}} e^x dx, I_3 = \int_0^{\fr...

Let I1=0π4ex2dx,I2=0π4exdx,I3=0π4ex2cosxdx,I4=0π4ex2sinxdxI_1 = \int_0^{\frac{\pi}{4}} e^{x^2} dx, I_2 = \int_0^{\frac{\pi}{4}} e^x dx, I_3 = \int_0^{\frac{\pi}{4}} e^{x^2} \cdot \cos x dx, I_4 = \int_0^{\frac{\pi}{4}} e^{x^2} \cdot \sin x dx, then:

A

I1>I2>I3>I4I_1 > I_2 > I_3 > I_4

B

I2>I3>I4>I1I_2 > I_3 > I_4 > I_1

C

I3>I4>I1>I2I_3 > I_4 > I_1 > I_2

D

I2>I1>I3>I4I_2 > I_1 > I_3 > I_4

Answer

I_2 > I_1 > I_3 > I_4

Explanation

Solution

To compare the four given definite integrals, we will analyze their integrands over the interval of integration [0,π4][0, \frac{\pi}{4}].

The integrals are:

  1. I1=0π4ex2dxI_1 = \int_0^{\frac{\pi}{4}} e^{x^2} dx
  2. I2=0π4exdxI_2 = \int_0^{\frac{\pi}{4}} e^x dx
  3. I3=0π4ex2cosxdxI_3 = \int_0^{\frac{\pi}{4}} e^{x^2} \cdot \cos x dx
  4. I4=0π4ex2sinxdxI_4 = \int_0^{\frac{\pi}{4}} e^{x^2} \cdot \sin x dx

The interval of integration is [0,π4][0, \frac{\pi}{4}]. Note that π40.785\frac{\pi}{4} \approx 0.785, which is less than 1.

Step 1: Comparing I1I_1 and I2I_2

For x(0,π4]x \in (0, \frac{\pi}{4}], we have x2<xx^2 < x (since x<1x < 1).

Since the exponential function ete^t is strictly increasing, if a<ba < b, then ea<ebe^a < e^b.

Therefore, for x(0,π4]x \in (0, \frac{\pi}{4}], ex2<exe^{x^2} < e^x.

By the property of definite integrals, if f(x)<g(x)f(x) < g(x) over an interval, then f(x)dx<g(x)dx\int f(x) dx < \int g(x) dx.

So, 0π4ex2dx<0π4exdx\int_0^{\frac{\pi}{4}} e^{x^2} dx < \int_0^{\frac{\pi}{4}} e^x dx, which means I1<I2I_1 < I_2.

Step 2: Comparing I1I_1 and I3I_3

For x(0,π4]x \in (0, \frac{\pi}{4}], we know that cosx<1\cos x < 1. (At x=0x=0, cos0=1\cos 0 = 1, but for any x>0x > 0 in the interval, cosx<1\cos x < 1).

Since ex2e^{x^2} is always positive, multiplying both sides of cosx<1\cos x < 1 by ex2e^{x^2} gives:

ex2cosx<ex2e^{x^2} \cdot \cos x < e^{x^2}.

Therefore, 0π4ex2cosxdx<0π4ex2dx\int_0^{\frac{\pi}{4}} e^{x^2} \cdot \cos x dx < \int_0^{\frac{\pi}{4}} e^{x^2} dx, which means I3<I1I_3 < I_1.

Step 3: Comparing I3I_3 and I4I_4

For x(0,π4)x \in (0, \frac{\pi}{4}), we know that cosx>sinx\cos x > \sin x. (At x=0x=0, cos0=1\cos 0 = 1 and sin0=0\sin 0 = 0. At x=π4x=\frac{\pi}{4}, cosπ4=sinπ4=12\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}. The strict inequality cosx>sinx\cos x > \sin x holds for x(0,π4)x \in (0, \frac{\pi}{4})).

Since ex2e^{x^2} is always positive, multiplying both sides of cosx>sinx\cos x > \sin x by ex2e^{x^2} gives:

ex2cosx>ex2sinxe^{x^2} \cdot \cos x > e^{x^2} \cdot \sin x.

Therefore, 0π4ex2cosxdx>0π4ex2sinxdx\int_0^{\frac{\pi}{4}} e^{x^2} \cdot \cos x dx > \int_0^{\frac{\pi}{4}} e^{x^2} \cdot \sin x dx, which means I3>I4I_3 > I_4.

Step 4: Combining the inequalities

From Step 1, we have I2>I1I_2 > I_1.

From Step 2, we have I1>I3I_1 > I_3.

From Step 3, we have I3>I4I_3 > I_4.

Combining these inequalities, we get the final order:

I2>I1>I3>I4I_2 > I_1 > I_3 > I_4.

Comparing this with the given options, option (D) matches our result.