Solveeit Logo

Question

Question: Let f be a differentiable function on R and satisfying the integral equation $\int_{0}^{x}f(t)dt + \...

Let f be a differentiable function on R and satisfying the integral equation 0xf(t)dt+0xtf(xt)dt=1+ex\int_{0}^{x}f(t)dt + \int_{0}^{x}t \cdot f(x-t)dt = -1 + e^{-x}, for all xRx \in R, then

A

f(2) = e2e^{-2}

B

f(0)+f'(0) = 1

C

f'(0) = 2

D

f'(0) = 1

Answer

Options (A), (B), and (C) are correct.

Explanation

Solution

  1. Rewrite the given equation:

    0xf(t)dt+0xtf(xt)dt=1+ex.\int_{0}^{x}f(t)dt + \int_{0}^{x}t\,f(x-t)dt = -1 + e^{-x}.

    Change variable in the second integral using u=xtu = x-t so that

    0xtf(xt)dt=0x(xu)f(u)du.\int_{0}^{x}t\,f(x-t)dt = \int_{0}^{x}(x-u)f(u)du.

    Hence, the equation becomes:

    0x[1+(xu)]f(u)du=0x[(x+1)u]f(u)du=ex1.\int_{0}^{x}\Big[ 1+(x-u)\Big]f(u)du = \int_{0}^{x}\big[(x+1)-u\big]f(u)du = e^{-x}-1.
  2. Differentiate both sides with respect to xx. Use Leibniz’s rule:

    ddx[0x[(x+1)u]f(u)du]=0xf(u)du+f(x)(since (x+1)x=1).\frac{d}{dx}\Big[\int_{0}^{x}\big[(x+1)-u\big]f(u)du\Big] = \int_{0}^{x}f(u)du + f(x)\quad (\text{since }(x+1)-x=1).

    And the derivative of the right side is:

    ddx[ex1]=ex.\frac{d}{dx}\Big[e^{-x}-1\Big] = -e^{-x}.

    So, we have:

    0xf(u)du+f(x)=ex.\int_{0}^{x}f(u)du + f(x) = -e^{-x}.
  3. Let F(x)=0xf(u)duF(x)=\int_{0}^{x}f(u)du, then F(x)=f(x)F'(x)=f(x). The equation becomes:

    F(x)+F(x)=ex.F(x)+F'(x)=-e^{-x}.

    This is a first-order linear ODE for F(x)F(x).

  4. Solve using the integrating factor exe^x:

    ddx[exF(x)]=exex=1.\frac{d}{dx}\Big[e^x F(x)\Big] = -e^x e^{-x} = -1.

    Integrate:

    exF(x)=x+C.e^x F(x) = -x + C.

    Since F(0)=0F(0)=0, we have C=0C=0. Thus:

    F(x)=xex.F(x) = -x\,e^{-x}.
  5. Differentiate F(x)F(x) to find f(x)f(x):

    f(x)=F(x)=ddx[xex]=ex+xex=ex(x1).f(x) = F'(x) = \frac{d}{dx}\Big[-x\,e^{-x}\Big] = -e^{-x} + x\,e^{-x} = e^{-x}(x-1).
  6. Now check the options:

    • f(2)=e2(21)=e2f(2) = e^{-2}(2-1)=e^{-2}. So option (A) is correct.

    • f(0)=e0(01)=1f(0) = e^{0}(0-1) = -1 and f(x)=ddx[ex(x1)]=ex(2x)f'(x) = \frac{d}{dx}\Big[e^{-x}(x-1)\Big] = e^{-x}(2-x) giving f(0)=2f'(0)=2. Thus, f(0)+f(0)=1+2=1f(0) + f'(0)=-1+2=1. So option (B) is correct.

    • f(0)=2f'(0)=2 confirms option (C) is correct.

    • Option (D) f(0)=1f'(0)=1 is false.