Solveeit Logo

Question

Question: $\int \sqrt{z}\left(z^{2}-\frac{1}{4z}\right)dz =$...

z(z214z)dz=\int \sqrt{z}\left(z^{2}-\frac{1}{4z}\right)dz =

Answer

27z7/212z1/2+C\frac{2}{7} z^{7/2} - \frac{1}{2} z^{1/2} + C

Explanation

Solution

We need to evaluate the integral z(z214z)dz\int \sqrt{z}\left(z^{2}-\frac{1}{4z}\right)dz.

First, simplify the integrand: z(z214z)=z1/2(z214z1)\sqrt{z}\left(z^{2}-\frac{1}{4z}\right) = z^{1/2}\left(z^{2}-\frac{1}{4}z^{-1}\right) =z1/2z2z1/214z1= z^{1/2} \cdot z^2 - z^{1/2} \cdot \frac{1}{4}z^{-1}

Using the exponent rule aman=am+na^m \cdot a^n = a^{m+n}: =z1/2+214z1/21= z^{1/2+2} - \frac{1}{4}z^{1/2-1} =z5/214z1/2= z^{5/2} - \frac{1}{4}z^{-1/2}

Now, integrate the simplified expression term by term using the power rule for integration, zndz=zn+1n+1+C\int z^n dz = \frac{z^{n+1}}{n+1} + C (for n1n \neq -1): (z5/214z1/2)dz=z5/2dz14z1/2dz\int \left(z^{5/2} - \frac{1}{4}z^{-1/2}\right)dz = \int z^{5/2} dz - \frac{1}{4} \int z^{-1/2} dz

For the first term, n=5/2n = 5/2: z5/2dz=z5/2+15/2+1+C1=z7/27/2+C1=27z7/2+C1\int z^{5/2} dz = \frac{z^{5/2+1}}{5/2+1} + C_1 = \frac{z^{7/2}}{7/2} + C_1 = \frac{2}{7} z^{7/2} + C_1

For the second term, n=1/2n = -1/2: z1/2dz=z1/2+11/2+1+C2=z1/21/2+C2=2z1/2+C2\int z^{-1/2} dz = \frac{z^{-1/2+1}}{-1/2+1} + C_2 = \frac{z^{1/2}}{1/2} + C_2 = 2 z^{1/2} + C_2

Combine the results: (z5/214z1/2)dz=27z7/214(2z1/2)+C\int \left(z^{5/2} - \frac{1}{4}z^{-1/2}\right)dz = \frac{2}{7} z^{7/2} - \frac{1}{4} (2 z^{1/2}) + C =27z7/212z1/2+C= \frac{2}{7} z^{7/2} - \frac{1}{2} z^{1/2} + C where CC is the constant of integration.

In summary: Simplify the integrand using exponent rules. Apply the power rule for integration zndz=zn+1n+1\int z^n dz = \frac{z^{n+1}}{n+1} to each term.