Solveeit Logo

Question

Question: A balloon containing 1 mole air at 1 atm initially is filled further with air till pressure increase...

A balloon containing 1 mole air at 1 atm initially is filled further with air till pressure increases to 3 atm. The initial diameter of the balloon is 1 m and the pressure at each state is proportion to diameter of the balloon. Calculate : (a) No. of moles of air added to change the pressure from 1 atm to 3 atm. (b) balloon will burst if either pressure increases to 7 atm or volume increases to 36π m³. Calculate the number of moles of air that must be added after initial condition to burst the balloon

A

(a) 80 moles (b) 1295 moles

B

(a) 81 moles (b) 2401 moles

C

(a) 80 moles (b) 2400 moles

D

(a) 81 moles (b) 1296 moles

Answer

(a) 80 moles (b) 1295 moles

Explanation

Solution

Assume constant temperature TT. Given PdP \propto d, let P=kdP=kd. With P1=1P_1=1 atm, d1=1d_1=1 m, we get k=1k=1 atm/m, so P=dP=d. Volume of balloon V=πd36V = \frac{\pi d^3}{6}. From Ideal Gas Law PV=nRTPV=nRT, we have PVn=constant\frac{PV}{n} = \text{constant}. Substituting P=kdP=kd and V=πd36V=\frac{\pi d^3}{6}: (kd)(πd36)n=constant    d4n=constant\frac{(kd)(\frac{\pi d^3}{6})}{n} = \text{constant} \implies \frac{d^4}{n} = \text{constant}. Thus, n=n1(dd1)4n = n_1 \left(\frac{d}{d_1}\right)^4.

(a) For P2=3P_2=3 atm, since P=dP=d, d2=3d_2=3 m. n2=n1(d2d1)4=1 mol×(3 m1 m)4=1×34=81n_2 = n_1 \left(\frac{d_2}{d_1}\right)^4 = 1 \text{ mol} \times \left(\frac{3 \text{ m}}{1 \text{ m}}\right)^4 = 1 \times 3^4 = 81 moles. Moles added = n2n1=811=80n_2 - n_1 = 81 - 1 = 80 moles.

(b) Balloon bursts if P=7P=7 atm OR V=36πV=36\pi m³. Condition 1: Pburst1=7P_{burst1} = 7 atm     dburst1=7\implies d_{burst1}=7 m. nburst1=n1(dburst1d1)4=1 mol×(7 m1 m)4=1×74=2401n_{burst1} = n_1 \left(\frac{d_{burst1}}{d_1}\right)^4 = 1 \text{ mol} \times \left(\frac{7 \text{ m}}{1 \text{ m}}\right)^4 = 1 \times 7^4 = 2401 moles. Moles added = 24011=24002401 - 1 = 2400 moles.

Condition 2: Vburst2=36πV_{burst2} = 36\pi m³. 36π=πdburst236    dburst23=216    dburst2=636\pi = \frac{\pi d_{burst2}^3}{6} \implies d_{burst2}^3 = 216 \implies d_{burst2} = 6 m. nburst2=n1(dburst2d1)4=1 mol×(6 m1 m)4=1×64=1296n_{burst2} = n_1 \left(\frac{d_{burst2}}{d_1}\right)^4 = 1 \text{ mol} \times \left(\frac{6 \text{ m}}{1 \text{ m}}\right)^4 = 1 \times 6^4 = 1296 moles. Moles added = 12961=12951296 - 1 = 1295 moles.

The balloon bursts when the minimum number of moles are added to reach either condition. Minimum moles added = min(2400, 1295) = 1295 moles.