Solveeit Logo

Question

Question: If $Z_1, Z_2, Z_3, Z_4$ are roots of the equation $z^4 + z^3 + z^2 + z + 1 = 0$, then least value of...

If Z1,Z2,Z3,Z4Z_1, Z_2, Z_3, Z_4 are roots of the equation z4+z3+z2+z+1=0z^4 + z^3 + z^2 + z + 1 = 0, then least value of [Z1+Z2]+1[|Z_1 + Z_2|] + 1 is ([.] denotes G.I.F.) ___ .

Answer

1

Explanation

Solution

The equation

z4+z3+z2+z+1=0z^4+z^3+z^2+z+1=0

can be written as

z51z1=0,\frac{z^5-1}{z-1}=0,

so its roots are the 5th roots of unity, except z=1z=1. That is,

zk=e2πik/5,k=1,2,3,4.z_k = e^{2\pi i k/5},\quad k=1,2,3,4.

For any two roots, say zaz_a and zbz_b, we have:

za+zb=eiθa+eiθb=2cosθaθb2.|z_a+z_b| = \left|e^{i\theta_a}+e^{i\theta_b}\right| = 2\left|\cos\frac{\theta_a-\theta_b}{2}\right|.

Choosing two roots with an angular difference of 144144^\circ (or 216216^\circ) gives:

za+zb=2cos(72)2(0.309)0.618.|z_a+z_b| = 2\left|\cos(72^\circ)\right| \approx 2(0.309) \approx 0.618.

Since the Greatest Integer Function (G.I.F) [x][x] gives the greatest integer x\le x,

[za+zb]=[0.618]=0.[|z_a+z_b|] = [0.618] = 0.

Thus, the least value of [z1+z2]+1[|z_1+z_2|]+1 is

0+1=1.0+1=1.