Solveeit Logo

Question

Question: If $z = \begin{vmatrix} -5 & 3+4i & 5-7i \\ 3-4i & 6 & 8+7i \\ 5+7i & 8-7i & 9 \end{vmatrix}$, then ...

If z=53+4i57i34i68+7i5+7i87i9z = \begin{vmatrix} -5 & 3+4i & 5-7i \\ 3-4i & 6 & 8+7i \\ 5+7i & 8-7i & 9 \end{vmatrix}, then z is

A

Purely real

B

Purely imaginary

C

a+iba + ib, where a0,b0a \neq 0, b \neq 0

D

a+iba + ib, where b=4b = 4

Answer

Purely real

Explanation

Solution

The given matrix

A=(53+4i57i34i68+7i5+7i87i9).A=\begin{pmatrix} -5 & 3+4i & 5-7i \\ 3-4i & 6 & 8+7i \\ 5+7i & 8-7i & 9 \end{pmatrix}.

is a Hermitian matrix because:

  • a12=3+4ia_{12} = 3+4i and a21=34ia_{21} = 3-4i
  • a13=57ia_{13} = 5-7i and a31=5+7ia_{31} = 5+7i
  • a23=8+7ia_{23} = 8+7i and a32=87ia_{32} = 8-7i
  • The diagonal elements are real.

A fundamental property of Hermitian matrices is that all their eigenvalues (and hence the determinant, which is the product of the eigenvalues) are real. Thus, the determinant zz is purely real.