Solveeit Logo

Question

Question: If the differential equation of a curve, passing through $(0, -\pi/4)$ and $(t, 0)$ is $\cos y \lef...

If the differential equation of a curve, passing through (0,π/4)(0, -\pi/4) and (t,0)(t, 0) is

cosy(dydx+ex)+siny(exdydx)=ex\cos y \left( \frac{dy}{dx} + e^{-x} \right) + \sin y \left( e^{-x} - \frac{dy}{dx} \right) = e^{-x},

then find the value of t.ett.e^{-t}.

Answer

-(1+ln 2)ln(1+ln 2)

Explanation

Solution

The given differential equation is:

cosy(dydx+ex)+siny(exdydx)=ex\cos y \left( \frac{dy}{dx} + e^{-x} \right) + \sin y \left( e^{-x} - \frac{dy}{dx} \right) = e^{-x}

Expand the terms:

cosydydx+excosy+exsinysinydydx=ex\cos y \frac{dy}{dx} + e^{-x} \cos y + e^{-x} \sin y - \sin y \frac{dy}{dx} = e^{-x}

Group the terms with dydx\frac{dy}{dx} and exe^{-x}:

(cosysiny)dydx+ex(cosy+siny)=ex(\cos y - \sin y) \frac{dy}{dx} + e^{-x} (\cos y + \sin y) = e^{-x}

Let u=siny+cosyu = \sin y + \cos y. Then, differentiate uu with respect to xx:

dudx=ddx(siny+cosy)=cosydydxsinydydx=(cosysiny)dydx\frac{du}{dx} = \frac{d}{dx}(\sin y + \cos y) = \cos y \frac{dy}{dx} - \sin y \frac{dy}{dx} = (\cos y - \sin y) \frac{dy}{dx}

Substitute uu and dudx\frac{du}{dx} into the differential equation:

dudx+exu=ex\frac{du}{dx} + e^{-x} u = e^{-x}

The integrating factor (IF) is given by:

IF=eP(x)dx=eexdx=eex\text{IF} = e^{\int P(x) dx} = e^{\int e^{-x} dx} = e^{-e^{-x}}

The general solution is given by uIF=Q(x)IFdx+Cu \cdot \text{IF} = \int Q(x) \cdot \text{IF} dx + C:

ueex=exeexdx+Cu e^{-e^{-x}} = \int e^{-x} e^{-e^{-x}} dx + C

To evaluate the integral exeexdx\int e^{-x} e^{-e^{-x}} dx, let v=exv = e^{-x}. Then dv=exdxdv = -e^{-x} dx, so exdx=dve^{-x} dx = -dv. The integral becomes:

ev(dv)=evdv=(ev)=ev\int e^{-v} (-dv) = -\int e^{-v} dv = -(-e^{-v}) = e^{-v}

Substitute back v=exv = e^{-x}:

exeexdx=eex\int e^{-x} e^{-e^{-x}} dx = e^{-e^{-x}}

So, the general solution is:

ueex=eex+Cu e^{-e^{-x}} = e^{-e^{-x}} + C

Divide by eexe^{-e^{-x}}:

u=1+Ceexu = 1 + C e^{e^{-x}}

Substitute back u=siny+cosyu = \sin y + \cos y:

siny+cosy=1+Ceex\sin y + \cos y = 1 + C e^{e^{-x}}

Now, use the given points to find the constant CC. The curve passes through (0,π/4)(0, -\pi/4). Substitute x=0x=0 and y=π/4y=-\pi/4:

sin(π/4)+cos(π/4)=1+Cee0\sin(-\pi/4) + \cos(-\pi/4) = 1 + C e^{e^{-0}}

12+12=1+Ce1-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 1 + C e^{1}

0=1+Ce0 = 1 + Ce

Ce=1    C=1eCe = -1 \implies C = -\frac{1}{e}

So, the particular solution is:

siny+cosy=11eeex\sin y + \cos y = 1 - \frac{1}{e} e^{e^{-x}}

siny+cosy=1eex1\sin y + \cos y = 1 - e^{e^{-x}-1}

The curve also passes through (t,0)(t, 0). Substitute x=tx=t and y=0y=0:

sin(0)+cos(0)=1eet1\sin(0) + \cos(0) = 1 - e^{e^{-t}-1}

0+1=1eet10 + 1 = 1 - e^{e^{-t}-1}

1=1eet11 = 1 - e^{e^{-t}-1}

eet1=0e^{e^{-t}-1} = 0

This result is mathematically impossible. An exponential function can never be equal to zero. There is likely a typo in the question.

Assuming the solution is siny+cosy=1+Ceex\sin y + \cos y = -1 + C e^{e^{-x}}.

Using the point (0,π/4)(0, -\pi/4):

sin(π/4)+cos(π/4)=1+Cee0\sin(-\pi/4) + \cos(-\pi/4) = -1 + C e^{e^0}

12+12=1+Ce1-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = -1 + C e^1

0=1+Ce    Ce=1    C=1e0 = -1 + Ce \implies Ce = 1 \implies C = \frac{1}{e}.

So the particular solution is:

siny+cosy=1+1eeex=1+eex1\sin y + \cos y = -1 + \frac{1}{e} e^{e^{-x}} = -1 + e^{e^{-x}-1}.

Using the point (t,0)(t, 0):

sin(0)+cos(0)=1+eet1\sin(0) + \cos(0) = -1 + e^{e^{-t}-1}

0+1=1+eet10 + 1 = -1 + e^{e^{-t}-1}

1=1+eet11 = -1 + e^{e^{-t}-1}

2=eet12 = e^{e^{-t}-1}

Take natural logarithm on both sides:

ln2=et1\ln 2 = e^{-t} - 1

et=1+ln2e^{-t} = 1 + \ln 2

We need to find the value of tett \cdot e^{-t}.

From et=1+ln2e^{-t} = 1 + \ln 2, we find tt:

t=ln(1+ln2)-t = \ln(1 + \ln 2)

t=ln(1+ln2)t = -\ln(1 + \ln 2)

Now, calculate tett \cdot e^{-t}:

tet=(ln(1+ln2))(1+ln2)t \cdot e^{-t} = (-\ln(1 + \ln 2)) \cdot (1 + \ln 2)

This is the most plausible interpretation that yields a numerical answer.