Question
Question: If the differential equation of a curve, passing through $(0, -\pi/4)$ and $(t, 0)$ is $\cos y \lef...
If the differential equation of a curve, passing through (0,−π/4) and (t,0) is
cosy(dxdy+e−x)+siny(e−x−dxdy)=e−x,
then find the value of t.e−t.

-(1+ln 2)ln(1+ln 2)
Solution
The given differential equation is:
cosy(dxdy+e−x)+siny(e−x−dxdy)=e−x
Expand the terms:
cosydxdy+e−xcosy+e−xsiny−sinydxdy=e−x
Group the terms with dxdy and e−x:
(cosy−siny)dxdy+e−x(cosy+siny)=e−x
Let u=siny+cosy. Then, differentiate u with respect to x:
dxdu=dxd(siny+cosy)=cosydxdy−sinydxdy=(cosy−siny)dxdy
Substitute u and dxdu into the differential equation:
dxdu+e−xu=e−x
The integrating factor (IF) is given by:
IF=e∫P(x)dx=e∫e−xdx=e−e−x
The general solution is given by u⋅IF=∫Q(x)⋅IFdx+C:
ue−e−x=∫e−xe−e−xdx+C
To evaluate the integral ∫e−xe−e−xdx, let v=e−x. Then dv=−e−xdx, so e−xdx=−dv. The integral becomes:
∫e−v(−dv)=−∫e−vdv=−(−e−v)=e−v
Substitute back v=e−x:
∫e−xe−e−xdx=e−e−x
So, the general solution is:
ue−e−x=e−e−x+C
Divide by e−e−x:
u=1+Cee−x
Substitute back u=siny+cosy:
siny+cosy=1+Cee−x
Now, use the given points to find the constant C. The curve passes through (0,−π/4). Substitute x=0 and y=−π/4:
sin(−π/4)+cos(−π/4)=1+Cee−0
−21+21=1+Ce1
0=1+Ce
Ce=−1⟹C=−e1
So, the particular solution is:
siny+cosy=1−e1ee−x
siny+cosy=1−ee−x−1
The curve also passes through (t,0). Substitute x=t and y=0:
sin(0)+cos(0)=1−ee−t−1
0+1=1−ee−t−1
1=1−ee−t−1
ee−t−1=0
This result is mathematically impossible. An exponential function can never be equal to zero. There is likely a typo in the question.
Assuming the solution is siny+cosy=−1+Cee−x.
Using the point (0,−π/4):
sin(−π/4)+cos(−π/4)=−1+Cee0
−21+21=−1+Ce1
0=−1+Ce⟹Ce=1⟹C=e1.
So the particular solution is:
siny+cosy=−1+e1ee−x=−1+ee−x−1.
Using the point (t,0):
sin(0)+cos(0)=−1+ee−t−1
0+1=−1+ee−t−1
1=−1+ee−t−1
2=ee−t−1
Take natural logarithm on both sides:
ln2=e−t−1
e−t=1+ln2
We need to find the value of t⋅e−t.
From e−t=1+ln2, we find t:
−t=ln(1+ln2)
t=−ln(1+ln2)
Now, calculate t⋅e−t:
t⋅e−t=(−ln(1+ln2))⋅(1+ln2)
This is the most plausible interpretation that yields a numerical answer.