Solveeit Logo

Question

Question: If $px^4+qx^3+rx^2+sx+t = \begin{vmatrix} x^2+3x & x-1 & x+3 \\ x+1 & 2-x & x-3 \\ x-3 & x+4 & 3x \e...

If px4+qx3+rx2+sx+t=x2+3xx1x+3x+12xx3x3x+43xpx^4+qx^3+rx^2+sx+t = \begin{vmatrix} x^2+3x & x-1 & x+3 \\ x+1 & 2-x & x-3 \\ x-3 & x+4 & 3x \end{vmatrix} then t is equal to -

A

33

B

0

C

21

D

none

Answer

21

Explanation

Solution

To find the value of 't', we need to understand that 't' is the constant term of the polynomial px4+qx3+rx2+sx+tpx^4+qx^3+rx^2+sx+t.

The constant term of any polynomial P(x)P(x) can be found by substituting x=0x=0 into the polynomial.
Let the given polynomial be P(x)=px4+qx3+rx2+sx+tP(x) = px^4+qx^3+rx^2+sx+t.
Then, P(0)=p(0)4+q(0)3+r(0)2+s(0)+t=tP(0) = p(0)^4+q(0)^3+r(0)^2+s(0)+t = t.

We are given that P(x)=x2+3xx1x+3x+12xx3x3x+43xP(x) = \begin{vmatrix} x^2+3x & x-1 & x+3 \\ x+1 & 2-x & x-3 \\ x-3 & x+4 & 3x \end{vmatrix}.
To find 't', we substitute x=0x=0 into the determinant: t=02+3(0)010+30+12003030+43(0)=013123340t = \begin{vmatrix} 0^2+3(0) & 0-1 & 0+3 \\ 0+1 & 2-0 & 0-3 \\ 0-3 & 0+4 & 3(0) \end{vmatrix} = \begin{vmatrix} 0 & -1 & 3 \\ 1 & 2 & -3 \\ -3 & 4 & 0 \end{vmatrix}

Now, we evaluate this 3×33 \times 3 determinant. We can expand it along the first row: t=0cofactor(0)(1)cofactor(1)+3cofactor(3)t = 0 \cdot \text{cofactor}(0) - (-1) \cdot \text{cofactor}(-1) + 3 \cdot \text{cofactor}(3)
t=02340(1)1330+31234t = 0 \cdot \begin{vmatrix} 2 & -3 \\ 4 & 0 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & -3 \\ -3 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix}

Calculate the 2×22 \times 2 determinants: 2340=(2)(0)(3)(4)=0(12)=12\begin{vmatrix} 2 & -3 \\ 4 & 0 \end{vmatrix} = (2)(0) - (-3)(4) = 0 - (-12) = 12
1330=(1)(0)(3)(3)=09=9\begin{vmatrix} 1 & -3 \\ -3 & 0 \end{vmatrix} = (1)(0) - (-3)(-3) = 0 - 9 = -9
1234=(1)(4)(2)(3)=4(6)=4+6=10\begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} = (1)(4) - (2)(-3) = 4 - (-6) = 4 + 6 = 10

Substitute these values back into the expression for 't': t=0(12)+1(9)+3(10)t = 0 \cdot (12) + 1 \cdot (-9) + 3 \cdot (10)
t=09+30t = 0 - 9 + 30
t=21t = 21